Zhu, Hao; He, Zhongshi; Zhou, Shangbo Lag synchronization of the fractional-order system via nonlinear observer. (English) Zbl 1247.34099 Int. J. Mod. Phys. B 25, No. 29, 3951-3964 (2011). Cited in 6 Documents MSC: 34D06 Synchronization of solutions to ordinary differential equations 34H10 Chaos control for problems involving ordinary differential equations 34D08 Characteristic and Lyapunov exponents of ordinary differential equations 34A08 Fractional ordinary differential equations Keywords:fractional-order; chaos; lag synchronization; stability PDF BibTeX XML Cite \textit{H. Zhu} et al., Int. J. Mod. Phys. B 25, No. 29, 3951--3964 (2011; Zbl 1247.34099) Full Text: DOI OpenURL References: [1] Gao X., Chaos Solit. Fract. 26 pp 1125– [2] DOI: 10.1109/81.404062 [3] DOI: 10.1016/j.chaos.2006.10.054 [4] Li C. P., Chaos Solit. Fract. 20 pp 443– [5] DOI: 10.1016/j.chaos.2004.02.035 · Zbl 1069.37025 [6] DOI: 10.1016/j.physa.2005.01.021 [7] DOI: 10.1016/j.physa.2004.04.113 [8] I. Petras, Proc. IEEE World Congress on Computational Intelligence, Int. Joint Conf. Neural Networks (IEEE, Canada, 2006) pp. 16–21. [9] DOI: 10.1016/j.chaos.2006.07.033 · Zbl 1139.93320 [10] DOI: 10.1016/j.na.2007.06.030 · Zbl 1148.65094 [11] D. Matignon, Computational Engineering in Systems and Application Multi-conference 2 (IMACS, IEEE-SMC, France, 1996) pp. 963–968. · Zbl 0863.93029 [12] DOI: 10.1007/s11071-006-9094-0 · Zbl 1185.34115 [13] DOI: 10.1016/j.physleta.2007.05.081 · Zbl 1209.37037 [14] DOI: 10.1016/j.physd.2008.03.037 · Zbl 1157.26310 [15] DOI: 10.1016/j.chaos.2005.11.020 [16] DOI: 10.1016/j.chaos.2008.10.005 · Zbl 1198.93206 [17] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 [18] DOI: 10.1142/S0218127401002778 · Zbl 1206.37053 [19] DOI: 10.1142/S0217979205032115 · Zbl 1124.37309 [20] DOI: 10.1016/j.physa.2005.06.078 [21] DOI: 10.1016/j.physa.2006.03.021 [22] DOI: 10.1063/1.2755420 · Zbl 1163.37382 [23] DOI: 10.1016/j.chaos.2007.06.082 · Zbl 1197.94233 [24] DOI: 10.1142/9789812817747_0001 [25] Kenneth S. M., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002 [26] DOI: 10.1016/j.physleta.2004.06.077 · Zbl 1209.93118 [27] DOI: 10.1016/j.physa.2005.04.040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.