Asymptotic stability of solitons for the Benjamin-Ono equation. (English) Zbl 1247.35133

The authors considered the Benjamin-Ono equation of the form: \[ u_t+{\mathcal H}u_{xx}+uu_x=0\quad (t,x)\in{\mathbb R}+{\mathbb R}, \tag{1} \] where \({\mathcal H}\) denotes the Hilbert transform \[ {\mathcal H}u(x)={1\over\pi}\text{p.v.}\intop_{-\infty}^{+\infty}{u(y)\over y-x}dy= {1\over\pi}\lim_{\varepsilon\to 0}\intop_{|y-x|>\varepsilon}{u(y)\over y-x}dy \tag{2} \] with initial data \[ u(0)=u_0(x). \tag{3} \] The main results of thise paper is devoted to the proof of the asymptotic stability of the family of solutions of the problem (1)–(3) in the energy space. The proof of the main theorem is based on a Liouville property for solutions close to the solitons for this equation.
As a corollary of the proofs of the theorems, the authors obtain stability and asymptotic stability of exact multi-solitons.


35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
35B40 Asymptotic behavior of solutions to PDEs
35C08 Soliton solutions
35B35 Stability in context of PDEs
Full Text: DOI arXiv Euclid


[1] Amick, C. J. and Toland, J. F.: Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Math. 167 (1991), 107-126. · Zbl 0755.35108
[2] Benjamin, T. B.: Internal waves of permanent form in fluids of great depth. Journal of Fluid Mechanics 29 (1967), 559-592. · Zbl 0147.46502
[3] Bennett, D. P., Brown, R. W., Stansfield, S. E., Stroughair, J. D. and Bona, J. L.: The stability of internal solitary waves. Math. Proc. Cambridge Philos. Soc. 94 (1983), 351-379. · Zbl 0574.76028
[4] Bona, J. L., Souganidis, P. E. and Strauss, W. A.: Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London Ser. A 411 (1987), 395-412. · Zbl 0648.76005
[5] Burq, N. and Planchon, F.: On well-posedness for the Benjamin-Ono equation. Math. Ann. 340 (2008), no. 3, 497-542. · Zbl 1148.35074
[6] Calderón, A.-P.: Commutators of singular integral operators. Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. · Zbl 0151.16901
[7] Coifman, R. R. and Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212 (1975), 315-331. · Zbl 0324.44005
[8] Herr, S., Ionescu, A. D., Kenig, C. E. and Koch, H.: Global solutions to dispersive nonlinear equations.
[9] Ginibre, J. and Velo, G.: Commutator expansions and smoothing properties of generalized Benjamin-Ono equations. Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), 221-229. · Zbl 0705.35126
[10] Gustafson, S., Takaoka, H. and Tsai, T.-P.: Stability in \(H^\frac 12\) of the sum of \(K\) solitons for the Benjamin-Ono equation. J. Math. Phys. 50 (2009), no. 1, 013101, 14 pp.
[11] Ionescu, A. D. and Kenig, C. E.: Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J. Amer. Math. Soc. 20 (2007), 753-798. · Zbl 1123.35055
[12] Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. In Studies in applied mathematics , 93-128. Adv. Math. Suppl. Stud. 8 , Academic Press, New York, 1983. · Zbl 0549.34001
[13] Kenig, C. E., Ponce, G. and Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46 (1993), 527-620. · Zbl 0808.35128
[14] Martel, Y.: Linear problems related to asymptotic stability of solitons of the generalized KdV equations. SIAM J. Math. Anal. 38 (2006), 759-781. · Zbl 1126.35055
[15] Martel, Y. and Merle, F.: Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. 11 (2001), 74-123. · Zbl 0985.35071
[16] Martel, Y. and Merle, F.: A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. (9) 79 (2000), 339-425. · Zbl 0963.37058
[17] Martel, Y. and Merle, F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157 (2001), 219-254. · Zbl 0981.35073
[18] Martel, Y. and Merle, F.: Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18 (2005), no. 1, 55-80. · Zbl 1064.35171
[19] Martel, Y. and Merle, F.: Asymptotic stability of solitons of the gKdV equations with a general nonlinearity. Math. Ann. 341 (2008), 391-427. · Zbl 1153.35068
[20] Martel, Y. and Merle, F.: Refined asymptotics around soliton for gKdV equations. Discrete Contin. Dyn. Syst. 20 (2008), 177-218. · Zbl 1137.35062
[21] Martel, Y., Merle, F. and Tsai, T.-P.: Stability and asymptotic stability in the energy space of the sum of \(N\) solitons for the subcritical gKdV equations. Comm. Math. Phys. 231 (2002), 347-373. · Zbl 1017.35098
[22] Matsuno, Y.: The Lyapunov stability of the \(N\)-soliton solutions in the Lax hierarchy of the Benjamin-Ono equation. J. Math. Phys. 47 (2006), 103505, 13pp. · Zbl 1112.37061
[23] Neves, A. and Lopes, O.: Orbital stability of double solitons for the Benjamin-Ono equation. Comm. Math. Phys. 262 (2006), 757-791. · Zbl 1103.37046
[24] Pego, R. L. and Weinstein, M. I.: Asymptotic stability of solitary waves. Comm. Math. Phys. 164 (1994), 305-349. · Zbl 0805.35117
[25] Ponce, G.: Smoothing properties of solutions to the Benjamin-Ono equation. In Analysis and partial differential equations , 667-679. Lecture Notes in Pure and Appl. Math. 122 . Dekker, New York, 1990. · Zbl 0704.35058
[26] Stein, E.: Singular integrals and differentiability properties of functions . Princeton Mathematical Series 30 . Princeton Univ. Press, Princeton, 1970. · Zbl 0207.13501
[27] Tao, T.: Global well-posedness of the Benjamin-Ono equation in \(H^1(\mathbbR)\). J. Hyperbolic Differ. Equ. 1 (2004), 27-49. · Zbl 1055.35104
[28] Toland, J. F.: The Peierls-Nabarro and Benjamin-Ono equations. J. Funct. Anal. 145 (1997), 136-150. · Zbl 0876.35106
[29] Weinstein, M. I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985), 472-491. · Zbl 0583.35028
[30] Weinstein, M. I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39 (1986), 51-67. · Zbl 0594.35005
[31] Weinstein, M. I.: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Comm. Partial Differential Equations 12 (1987), 1133-1173. · Zbl 0657.73040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.