Wang, Yongqing; Liu, Lishan; Wu, Yonghong Positive solutions for a fractional boundary value problem with changing sign nonlinearity. (English) Zbl 1247.35192 Abstr. Appl. Anal. 2012, Article ID 214042, 17 p. (2012). Summary: We discuss the existence of positive solutions to the following fractional \(m\)-point boundary value problem with changing sign nonlinearity \(D^\alpha_{0+} u(t) + \lambda f(t, u(t)) = 0\), \(0 < t < 1\), \(u(0) = 0\), \(D^\beta_{0+} u(1) = \sum^{m-2}_{i=1} \eta_i D^\beta_{0+} u(\xi_i)\), where \(\lambda\) is a positive parameter, \(1 < \alpha \leq 2\), \(0 < \beta < \alpha - 1\), \(0 < \xi_1 < \cdots < \xi_{m-2} < 1\) with \(\sum^{m-2}_{i=1} \eta_i \xi^{\alpha -\beta -1}_i < 1\), \(D^\alpha_{0+}\) is the standard Riemann-Liouville derivative, \(f\) and may be singular at \(t = 0\) and/or \(t = 1\) and also may change sign. The work improves and generalizes some previous results. Cited in 4 Documents MSC: 35R11 Fractional partial differential equations 35B09 Positive solutions to PDEs × Cite Format Result Cite Review PDF Full Text: DOI References: [1] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives (Theory and Applications), Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993. · Zbl 0818.26003 [2] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1999. · Zbl 0924.34008 [3] A. A. Kilbas, H. M. Srivastava, and J. J. Nieto, Theory and Applicational Diffential Equations, Elsevier, Amsterdam, The Netherlands, 2006. [4] O. P. Agrawal, “Formulation of Euler-Lagrange equations for fractional variational problems,” Journal of Mathematical Analysis and Applications, vol. 272, no. 1, pp. 368-379, 2002. · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4 [5] V. Lakshmikantham and A. S. Vatsala, “General uniqueness and monotone iterative technique for fractional differential equations,” Applied Mathematics Letters, vol. 21, no. 8, pp. 828-834, 2008. · Zbl 1161.34031 · doi:10.1016/j.aml.2007.09.006 [6] N. Kosmatov, “Integral equations and initial value problems for nonlinear differential equations of fractional order,” Nonlinear Analysis, vol. 70, no. 7, pp. 2521-2529, 2009. · Zbl 1169.34302 · doi:10.1016/j.na.2008.03.037 [7] R. P. Agarwal, D. O’Regan, and S. Stan\vek, “Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 371, no. 1, pp. 57-68, 2010. · Zbl 1206.34009 · doi:10.1016/j.jmaa.2010.04.034 [8] B. Ahmad and A. Alsaedi, “Existence of solutions for anti-periodic boundary value problems of nonlinear impulsive functional integro-differential equations of mixed type,” Nonlinear Analysis, vol. 3, no. 4, pp. 501-509, 2009. · Zbl 1179.45008 · doi:10.1016/j.nahs.2009.03.007 [9] S. Liang and J. Zhang, “Positive solutions for boundary value problems of nonlinear fractional differential equation,” Nonlinear Analysis, vol. 71, no. 11, pp. 5545-5550, 2009. · Zbl 1185.26011 · doi:10.1016/j.na.2009.04.045 [10] D. Jiang and C. Yuan, “The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application,” Nonlinear Analysis, vol. 72, no. 2, pp. 710-719, 2010. · Zbl 1192.34008 · doi:10.1016/j.na.2009.07.012 [11] C. S. Goodrich, “Existence of a positive solution to a class of fractional differential equations,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1050-1055, 2010. · Zbl 1204.34007 · doi:10.1016/j.aml.2010.04.035 [12] A. Arara, M. Benchohra, N. Hamidi, and J. J. Nieto, “Fractional order differential equations on an unbounded domain,” Nonlinear Analysis, vol. 72, no. 2, pp. 580-586, 2010. · Zbl 1179.26015 · doi:10.1016/j.na.2009.06.106 [13] H. A. H. Salem, “On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies,” Journal of Computational and Applied Mathematics, vol. 224, no. 2, pp. 565-572, 2009. · Zbl 1176.34070 · doi:10.1016/j.cam.2008.05.033 [14] C. F. Li, X. N. Luo, and Y. Zhou, “Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1363-1375, 2010. · Zbl 1189.34014 · doi:10.1016/j.camwa.2009.06.029 [15] M. Benchohra, S. Hamani, and S. K. Ntouyas, “Boundary value problems for differential equations with fractional order and nonlocal conditions,” Nonlinear Analysis, vol. 71, no. 7-8, pp. 2391-2396, 2009. · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073 [16] M. El-Shahed and J. J. Nieto, “Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order,” Computers & Mathematics with Applications, vol. 59, no. 11, pp. 3438-3443, 2010. · Zbl 1197.34003 · doi:10.1016/j.camwa.2010.03.031 [17] Z. Bai, “On positive solutions of a nonlocal fractional boundary value problem,” Nonlinear Analysis, vol. 72, no. 2, pp. 916-924, 2010. · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033 [18] M. Rehman and R. A. Khan, “Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1038-1044, 2010. · Zbl 1214.34007 · doi:10.1016/j.aml.2010.04.033 [19] J. Allison and N. Kosmatov, “Multi-point boundary value problems of fractional order,” Communications in Applied Analysis, vol. 12, no. 4, pp. 451-458, 2008. · Zbl 1184.34012 [20] C. Yuan, D. Jiang, and X. Xu, “Singular positone and semipositone boundary value problems of nonlinear fractional differential equations,” Mathematical Problems in Engineering, vol. 2009, Article ID 535209, 17 pages, 2009. · Zbl 1185.34008 · doi:10.1155/2009/535209 [21] B. Ahmad and J. J. Nieto, “Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions,” Computers & Mathematics with Applications, vol. 58, no. 9, pp. 1838-1843, 2009. · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091 [22] B. Ahmad and J. J. Nieto, “Existence results for higher order fractional differential inclusions with nonlocal boundary conditions,” Nonlinear Studies, vol. 17, no. 2, pp. 131-138, 2010. · Zbl 1206.34010 [23] X. Xu and X. Fei, “The positive properties of Green’s function for three point boundary value problems of nonlinear fractional differential equations and its applications,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1555-1565, 2012. · Zbl 1248.35224 · doi:10.1016/j.cnsns.2011.08.032 [24] K. Li and J. Jia, “Existence and uniqueness of mild solutions for abstract delay fractional differential equations,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1398-1404, 2011. · Zbl 1228.34019 · doi:10.1016/j.camwa.2011.02.038 [25] K. Deimling, Nonlinear Functional Analysis, Springer, New York, NY, USA, 1985. · Zbl 0559.47040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.