Bian, Li-Hua; Sun, Hong-Rui; Zhang, Quan-Guo Solutions for discrete \(p\)-Laplacian periodic boundary value problems via critical point theory. (English) Zbl 1247.39004 J. Difference Equ. Appl. 18, No. 3, 345-355 (2012). The authors study a class of discrete \(p\)-Laplacian periodic boundary value problems with a real parameter. By using critical point theory, they obtain some results for the existence of at least two positive solutions, three solutions and multiple pairs of solutions of the problems when the parameter satisfies some conditions. Reviewer: Fengqin Zhang (Yuncheng) Cited in 12 Documents MSC: 39A12 Discrete version of topics in analysis 34B15 Nonlinear boundary value problems for ordinary differential equations 39A22 Growth, boundedness, comparison of solutions to difference equations Keywords:discrete periodic boundary value problem; \(p\)-Laplacian; critical point theory; positive solutions; multiple pairs of solutions PDF BibTeX XML Cite \textit{L.-H. Bian} et al., J. Difference Equ. Appl. 18, No. 3, 345--355 (2012; Zbl 1247.39004) Full Text: DOI OpenURL References: [1] Agarwal R.P., Difference Equations and Inequalities: Theory, Methods and Applications (2000) · Zbl 0952.39001 [2] DOI: 10.1016/j.na.2003.11.012 · Zbl 1070.39005 [3] DOI: 10.1155/ADE.2005.93 · Zbl 1098.39001 [4] DOI: 10.1016/0022-1236(73)90051-7 · Zbl 0273.49063 [5] DOI: 10.1016/S0898-1221(03)00097-X · Zbl 1057.39008 [6] DOI: 10.1080/10236190410001667959 · Zbl 1053.39003 [7] DOI: 10.1016/j.jmaa.2006.02.091 · Zbl 1113.39018 [8] DOI: 10.1016/S0362-546X(03)00092-0 · Zbl 1031.49006 [9] DOI: 10.1016/j.na.2008.04.021 · Zbl 1166.39006 [10] DOI: 10.1016/j.jmaa.2009.02.038 · Zbl 1169.39008 [11] DOI: 10.1016/j.jmaa.2005.07.029 · Zbl 1113.39019 [12] DOI: 10.1016/j.camwa.2008.01.025 · Zbl 1155.39301 [13] DOI: 10.1512/iumj.1972.22.22008 · Zbl 0228.58006 [14] DOI: 10.1016/S0898-1221(02)00095-0 · Zbl 1005.39014 [15] DOI: 10.1155/2008/345916 · Zbl 1146.39028 [16] DOI: 10.1016/j.jmaa.2004.02.026 · Zbl 1045.43012 [17] Kelly W.G., Difference Equations, an Introduction with Applications (1991) [18] Rabinowitz P.H., CBMS Reg. Conf. Ser. Math 65 (1986) [19] DOI: 10.1016/j.jde.2006.08.011 · Zbl 1112.39011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.