zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional Cauchy problems on bounded domains. (English) Zbl 1247.60078
Authors’ abstract: Fractional Cauchy problems replace the usual first-order time derivative by a fractional derivative. This paper develops classical solutions and stochastic analogues for fractional Cauchy problems in a bounded domain $D\subset \bbfR^d$ with Dirichlet boundary conditions. Stochastic solutions are constructed via an inverse stable subordinator whose scaling index corresponds to the order of the fractional time derivative. Dirichlet problems corresponding to iterated Brownian motion in a bounded domain are then solved by establishing a correspondence with the case of a half-derivative in time.

60G99Stochastic processes
35C10Series solutions of PDE
Full Text: DOI arXiv
[1] Agrawal, O. P. (2002). Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 29 145-155. · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[2] Allouba, H. and Zheng, W. (2001). Brownian-time processes: The PDE connection and the half-derivative generator. Ann. Probab. 29 1780-1795. · Zbl 1018.60066 · doi:10.1214/aop/1015345772
[3] Applebaum, D. (2004). Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 93 . Cambridge Univ. Press, Cambridge. · Zbl 1073.60002
[4] Arendt, W., Batty, C. J. K., Hieber, M. and Neubrander, F. (2001). Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96 . Birkhäuser, Basel. · Zbl 0978.34001
[5] Baeumer, B. and Meerschaert, M. M. (2001). Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4 481-500. · Zbl 1057.35102
[6] Baeumer, B., Benson, D. A. and Meerschaert, M. M. (2005). Advection and dispersion in time and space. Phys. A 350 245-262.
[7] Baeumer, B., Meerschaert, M. M. and Nane, E. (2009). Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. · Zbl 1186.60079
[8] Bass, R. F. (1998). Diffusions and Elliptic Operators . Springer, New York. · Zbl 0914.60009
[9] Becker-Kern, P., Meerschaert, M. M. and Scheffler, H.-P. (2004). Limit theorem for continuous-time random walks with two time scales. J. Appl. Probab. 41 455-466. · Zbl 1050.60038 · doi:10.1239/jap/1082999078
[10] Burdzy, K. (1993). Some path properties of iterated Brownian motion. In Seminar on Stochastic Processes , 1992 ( Seattle, WA , 1992). Progress in Probability (E. Çinlar, K. L. Chung and M. J. Sharpe, eds.) 33 67-87. Birkhäuser, Boston, MA. · Zbl 0789.60060
[11] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13 529-539.
[12] Davies, E. B. (1989). Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92 . Cambridge Univ. Press, Cambridge. · Zbl 0699.35006
[13] Davies, E. B. (1995). Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics 42 . Cambridge Univ. Press, Cambridge. · Zbl 0893.47004
[14] DeBlassie, R. D. (2004). Iterated Brownian motion in an open set. Ann. Appl. Probab. 14 1529-1558. · Zbl 1051.60082 · doi:10.1214/105051604000000404
[15] Einstein, A. (1906). On the theory of the Brownian movement. Annalen der Physik 4 371-381.
[16] Gilbarg, D. and Trudinger, N. S. (2001). Elliptic Partial Differential Equations of Second Order . Springer, Berlin. Reprint of the 1998 edition. · Zbl 1042.35002
[17] Gorenflo, R. and Mainardi, F. (2003). Fractional diffusion processes: Probability distribution and continuous time random walk. Lecture Notes in Phys. 621 148-166.
[18] Kinzelbach, W. (1988). The random walk method in pollutant transport simulation. In Groundwater Flow and Quality Modelling (E. Custodio, A. Gurgui and J. P. Lobo-Ferreira, eds.) 227-245. Reidel, Norwell, MA.
[19] Kochubeĭ, A. N. (1989). The Cauchy problem for evolution equations of fractional order. Differentsial’nye Uravneniya 25 1359-1368, 1468. · Zbl 0696.34047
[20] Kochubeĭ, A. N. (1990). Diffusion of fractional order. Differentsial’nye Uravneniya 26 660-670, 733-734.
[21] Krägeloh, A. M. (2003). Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups. J. Math. Anal. Appl. 283 459-467. · Zbl 1061.47038 · doi:10.1016/S0022-247X(03)00269-5
[22] Mainardi, F. and Gorenflo, R. (2000). On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118 283-299. · Zbl 0970.45005 · doi:10.1016/S0377-0427(00)00294-6
[23] Meerschaert, M. M. and Scheffler, H.-P. (2004). Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41 623-638. · Zbl 1065.60042 · doi:10.1239/jap/1091543414
[24] Meerschaert, M. M., Benson, D. A., Scheffler, H.-P. and Baeumer, B. (2002). Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E (3) 65 1103-1106. · Zbl 1244.60080
[25] Metzler, R. and Klafter, J. (2004). The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37 R161-R208. · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[26] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations . Wiley, New York. · Zbl 0789.26002
[27] Nigmatullin, R. R. (1986). The realization of the generalized transfer in a medium with fractal geometry. Phys. Status Solidi B 133 425-430.
[28] Podlubny, I. (1999). Fractional Differential Equations. Mathematics in Science and Engineering 198 . Academic Press, San Diego, CA. · Zbl 0924.34008
[29] Royden, H. L. (1968). Real Analysis , 2nd ed. Macmillan, New York. · Zbl 0197.03501
[30] Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integrals and Derivatives : Theory and Applications . Gordon and Breach Science Publishers, Yverdon. Translated from the 1987 Russian original, revised by the authors. · Zbl 0818.26003
[31] Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68 . Cambridge Univ. Press, Cambridge. Translated from the 1990 Japanese original, revised by the author. · Zbl 0973.60001
[32] Scalas, E. (2004). Five years of continuous-time random walks in econophysics. In Proceedings of WEHIA ( Kyoto , 2004) (A. Namatame, ed.). Springer, Berlin. · Zbl 1183.91135
[33] Schneider, W. R. and Wyss, W. (1989). Fractional diffusion and wave equations. J. Math. Phys. 30 134-144. · Zbl 0692.45004 · doi:10.1063/1.528578
[34] Song, R. and Vondraček, Z. (2003). Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Related Fields 125 578-592. · Zbl 1022.60078 · doi:10.1007/s00440-002-0251-1
[35] Zaslavsky, G. M. (1994). Fractional kinetic equation for Hamiltonian chaos. Phys. D 76 110-122. · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2