Berestycki, Julien; Berestycki, Nathanaël; Limic, Vlada The \(\Lambda \)-coalescent speed of coming down from infinity. (English) Zbl 1247.60110 Ann. Probab. 38, No. 1, 207-233 (2010). Authors’ abstract: Consider a \(\Lambda \)-coalescent that comes down from infinity (meaning that it starts from a configuration containing infinitely many blocks at time 0, yet it has a finite number \(N_t\) of blocks at any positive time \(t>0\)). We exhibit a deterministic function \(v:(0, \infty)\rightarrow (0, \infty )\) such that \(N_t/v(t)\rightarrow 1\), almost surely, and in \(L^p\) for any \(p\geq 1\), as \(t\rightarrow 0\). Our approach relies on a novel martingale technique. Reviewer: Valentin Topchii (Omsk) Cited in 2 ReviewsCited in 25 Documents MSC: 60J25 Continuous-time Markov processes on general state spaces 60F99 Limit theorems in probability theory 92D25 Population dynamics (general) Keywords:exchangeable coalescents; small-time asymptotics; coming down from infinity; martingale techniques; fluid limits PDF BibTeX XML Cite \textit{J. Berestycki} et al., Ann. Probab. 38, No. 1, 207--233 (2010; Zbl 1247.60110) Full Text: DOI arXiv References: [1] Angel, O., Berestycki, N., Hammond, A. and Limic, V. (2009). Global divergence of spatial coalescents. In preparation. · Zbl 1271.92022 [2] Barlow, M. T., Jacka, S. D. and Yor, M. (1986). Inequalities for a pair of processes stopped at a random time. Proc. London Math. Soc. 52 142-172. · Zbl 0585.60055 [3] Berestycki, J., Berestycki, N. and Limic, V. (2008). Interpreting \Lambda -coalescent speed of coming down from infinity via particle representation of super-processes. In preparation. · Zbl 1247.60110 [4] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2007). Beta-coalescents and continuous stable random trees. Ann. Probab. 35 1835-1887. · Zbl 1129.60067 [5] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2008). Small-time behavior of beta coalescents. Ann. Inst. H. Poincaré Probab. Statist. 44 214-238. · Zbl 1214.60034 [6] Bertoin, J. and Le Gall, J.-F. (2006). Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 147-181. · Zbl 1110.60026 [7] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Comm. Math. Phys. 197 247-276. · Zbl 0927.60071 [8] Darling, R. W. R. and Norris, J. R. (2008). Differential equation approximations for Markov chains. Probab. Surv. 5 37-79. · Zbl 1189.60152 [9] Delmas, J.-F., Dhersin, J.-S. and Siri-Jegousse, A. (2008). Asymptotic results on the length of coalescent trees. Ann. Appl. Probab. 18 997-1025. · Zbl 1141.60007 [10] Dong, R., Gnedin, A. and Pitman, J. (2007). Exchangeable partitions derived from Markovian coalescents. Ann. Appl. Probab. 17 1172-1201. · Zbl 1147.60022 [11] Durrett, R. (2004). Probability : Theory and Examples , 3rd ed. Duxbury Press, Belmont, CA. · Zbl 1202.60001 [12] Durrett, R. (2002). Probability Models for DNA Sequence Evolution . Springer, New York. · Zbl 0991.92021 [13] Eldon, B. and Wakeley, J. (2006). Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172 2621-2633. [14] Ewens, W. J. (2004). Mathematical Population Genetics . Springer, New York. · Zbl 1060.92046 [15] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. · Zbl 0127.10602 [16] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235-248. · Zbl 0491.60076 [17] Kingman, J. F. C. (1982). On the genealogy of large populations. J. Appl. Probab. 19A 27-43. · Zbl 0516.92011 [18] Limic, V. and Sturm, A. (2006). The spatial \Lambda -coalescent. Electron. J. Probab. 11 363-393. · Zbl 1113.60077 [19] Li, G. and Hedgecock, D. (1998). Genetic heterogeneity, detected by PCR SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Canad. J. Fish. Aquat. Sci. 55 1025-1033. [20] Möhle, M. (2006). On sampling distributions for coalescent processes with simultaneous multiple collisions. Bernoulli 12 35-53. · Zbl 1099.92052 [21] Morris, A. P., Whittaker, J. C. and Balding, D. J. (2002). Fine-scale mapping of disease loci via shattered coalescent modeling of genealogies. Amer. J. Hum. Genet. 70 686-707. [22] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870-1902. · Zbl 0963.60079 [23] Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion , 2nd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0804.60001 [24] Rogers, L. C. G. and Williams, D. (1987). Diffusions , Markov Processes and Martingales , 2nd ed. Cambridge Univ. Press, Cambridge. · Zbl 0627.60001 [25] de la Peña, V. H. (1999). A general class of exponential inequalities for martingales and ratios. Ann. Probab. 27 537-564. · Zbl 0942.60004 [26] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 1116-1125. · Zbl 0962.92026 [27] Siri-Jegousse, A. (2008). Etude de Processus Appliqués Aux Modéles de Population . Ph.D. thesis, Paris V. [28] Schweinsberg, J. (2000). A necessary and sufficient condition for the \Lambda -coalescent to come down from infinity. Electron. Comm. Probab. 5 1-11. · Zbl 0953.60072 [29] Schweinsberg, J. (2000). Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 50. · Zbl 0959.60065 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.