×

zbMATH — the first resource for mathematics

Fuzzy \(p\)-value in testing fuzzy hypotheses with crisp data. (English) Zbl 1247.62105
Summary: In testing statistical hypotheses, as in other statistical problems, we may be confronted with fuzzy concepts. This paper deals with the problem of testing hypotheses, when the hypotheses are fuzzy and the data are crisp. We first introduce the notion of fuzzy \(p\)-values, by applying the extension principle and then present an approach for testing fuzzy hypotheses by comparing a fuzzy \(p\)-value and a fuzzy significance level, based on a comparison of two fuzzy sets. Numerical examples are also provided to illustrate the approach.

MSC:
62F86 Parametric inference and fuzziness
62F03 Parametric hypothesis testing
65C60 Computational problems in statistics (MSC2010)
Software:
ump
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold BF (1996) An approach to fuzzy hypothesis testing. Metrika 44: 119–126 · Zbl 0862.62019 · doi:10.1007/BF02614060
[2] Arnold BF (1998) Testing fuzzy hypotheses with crisp data. Fuzzy Sets Syst 94: 323–333 · Zbl 0940.62015 · doi:10.1016/S0165-0114(96)00258-8
[3] Berger JO, Sellke T (1987) Testing a point null hypothesis: the irreconcilability of p-values and evidence. J Am Stat Assoc 82: 112–122 · Zbl 0612.62022
[4] Buckley JJ (2005) Fuzzy statistics: hypothesis testing. Soft Comput 9: 512–518 · Zbl 1079.62026 · doi:10.1007/s00500-004-0368-5
[5] Casals MR, Gil MA, Gil P (1986) On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets Syst 20: 175–190 · Zbl 0611.62018 · doi:10.1016/0165-0114(86)90076-X
[6] Casals MR (1993) Bayesian testing of fuzzy parametric hypotheses from fuzzy information. Oper Res 27: 189–199 · Zbl 0773.62001
[7] Casella G, Berger RL (1990) Statistical inference. Brooks/Cole Publishing, CA · Zbl 0699.62001
[8] Denoeux T, Masson MH, HĂ©bert PA (2005) Nonparametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets Syst 153: 1–28 · Zbl 1062.62075 · doi:10.1016/j.fss.2005.01.008
[9] Dubois D, Prade H (1988) Possibility theory. Plenum Press, New York · Zbl 0645.68108
[10] Filzmoser P, Viertl R (2004) Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59: 21–29 · Zbl 1052.62009 · doi:10.1007/s001840300269
[11] Geyer CJ, Meeden GD (2005) Fuzzy and randomized confidence intervals and p-values. Stat Sci 20(4): 358–366 · Zbl 1130.62319 · doi:10.1214/088342305000000340
[12] Holena M (2001) A fuzzy logic generalization of a data mining approach. Neural Netw World 11: 595–610
[13] Holena M (2004) Fuzzy hypotheses testing in a framework of fuzzy logic. Fuzzy Sets Syst 145: 229–252 · Zbl 1050.68137 · doi:10.1016/S0165-0114(03)00208-2
[14] Knight K (2000) Mathematical statistics. Chapman & Hall/CRC, London · Zbl 0935.62002
[15] Lehmann EL (1991) Testing statistical hypotheses, 2nd edn. Wiley, London · Zbl 0777.62027
[16] Neyman J, Pearson ES (1933) The theory of statistical hypotheses in relation to probabilities a priori. Proc Camb Phil Soc 29: 492–510 · JFM 59.1163.03 · doi:10.1017/S030500410001152X
[17] Rohatgi VK, Ehsanes Saleh AK (2001) An introduction to probability and statistics, 2nd edn. Wiley, London · Zbl 0969.62002
[18] Taheri SM, Behboodian J (1999) Neyman–Pearson Lemma for fuzzy hypotheses testing. Metrika 49: 3–17 · Zbl 1093.62520 · doi:10.1007/s001840050021
[19] Taheri SM, Behboodian J (2001) A Bayesian approach to fuzzy hypotheses testing. Fuzzy Sets Syst 123: 39–48 · Zbl 0983.62015 · doi:10.1016/S0165-0114(00)00134-2
[20] Taheri SM (2003) Trends in fuzzy statistics. Aust J Stat 32(3): 239–257
[21] Tanaka H, Okuda T, Asai K et al (1979) Fuzzy information and decision in a statistical model. In: Gupta MM(eds) Advances in fuzzy set theory and applications. North-Holland, Amsterdam, pp 303–320
[22] Viertl R (1996) Statistical methods for non-precise data. CRC Press, Boca Raton, FL · Zbl 1047.93534
[23] Wang X, Kerre EE (2001) Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets Syst 118: 387–405 · Zbl 0971.03055 · doi:10.1016/S0165-0114(99)00063-9
[24] Watanabe N, Imaizumi T (1993) A fuzzy statistical test of fuzzy hypotheses. Fuzzy Sets Syst 53: 167–178 · Zbl 0795.62025 · doi:10.1016/0165-0114(93)90170-M
[25] Yuan Y (1991) Criteria for evaluating fuzzy ranking methods. Fuzzy Sets Syst 43: 139–157 · Zbl 0747.90003 · doi:10.1016/0165-0114(91)90073-Y
[26] Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338–359 · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.