zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. (English) Zbl 1247.65096
Summary: We use a methodology of optimization of the efficiency of a hybrid two-step method for the numerical solution of the radial Schrödinger equation and related problems with periodic or oscillating solutions. More specifically, we study how the vanishing of the phase-lag and its derivatives optimizes the efficiency of the hybrid two-step method.

MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
34L40Particular ordinary differential operators
WorldCat.org
Full Text: DOI
References:
[1] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 2nd edition, 2006. · Zbl 1094.65125
[2] L. Gr. Ixaru and M. Rizea, “A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies,” Computer Physics Communications, vol. 19, no. 1, pp. 23-27, 1980.
[3] A. Konguetsof and T. E. Simos, “A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation,” Journal of Computational and Applied Mathematics, vol. 158, no. 1, pp. 93-106, 2003. · Zbl 1027.65094 · doi:10.1016/S0377-0427(03)00469-2
[4] M. M. Chawla and P. S. Rao, “An explicit sixth-order method with phase-lag of order eight for y$^{\prime\prime}$=f(t,y),” Journal of Computational and Applied Mathematics, vol. 17, no. 3, pp. 365-368, 1987. · Zbl 0614.65084 · doi:10.1016/0377-0427(87)90113-0
[5] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, vol. 7, Chapman & Hall, London, UK, 1994. · Zbl 0816.65043 · doi:10.1007/BF01935017
[6] W. Zhu, X. Zhao, and Y. Tang, “Numerical methods with a high order of accuracy applied in the quantum system,” Journal of Chemical Physics, vol. 104, no. 6, pp. 2275-2286, 1996.
[7] J. C. Chiou and S. D. Wu, “Open Newton-Cotes differential methods as multilayer symplectic integrators,” Journal of Chemical Physics, vol. 107, no. 17, pp. 6894-6898, 1997.
[8] T. E. Simos, “A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation,” IMA Journal of Numerical Analysis, vol. 21, no. 4, pp. 919-931, 2001. · Zbl 0990.65079 · doi:10.1093/imanum/21.4.919
[9] T. E. Simos, “Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions,” Applied Mathematics Letters, vol. 15, no. 2, pp. 217-225, 2002. · Zbl 1003.65081 · doi:10.1016/S0893-9659(01)00121-5
[10] Ch. Tsitouras and T. E. Simos, “Optimized Runge-Kutta pairs for problems with oscillating solutions,” Journal of Computational and Applied Mathematics, vol. 147, no. 2, pp. 397-409, 2002. · Zbl 1013.65073 · doi:10.1016/S0377-0427(02)00475-2
[11] Z. Kalogiratou, Th. Monovasilis, and T. E. Simos, “Symplectic integrators for the numerical solution of the Schrödinger equation,” Journal of Computational and Applied Mathematics, vol. 158, no. 1, pp. 83-92, 2003. · Zbl 1027.65171 · doi:10.1016/S0377-0427(03)00478-3
[12] Z. Kalogiratou and T. E. Simos, “Newton-Cotes formulae for long-time integration,” Journal of Computational and Applied Mathematics, vol. 158, no. 1, pp. 75-82, 2003. · Zbl 1041.65104 · doi:10.1016/S0377-0427(03)00479-5
[13] G. Psihoyios and T. E. Simos, “Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions,” Journal of Computational and Applied Mathematics, vol. 158, no. 1, pp. 135-144, 2003. · Zbl 1027.65095 · doi:10.1016/S0377-0427(03)00481-3
[14] T. E. Simos, I. T. Famelis, and C. Tsitouras, “Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions,” Numerical Algorithms, vol. 34, no. 1, pp. 27-40, 2003. · Zbl 1031.65080 · doi:10.1023/A:1026167824656
[15] T. E. Simos, “Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution,” Applied Mathematics Letters, vol. 17, no. 5, pp. 601-607, 2004. · Zbl 1062.65075 · doi:10.1016/S0893-9659(04)90133-4
[16] K. Tselios and T. E. Simos, “Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics,” Journal of Computational and Applied Mathematics, vol. 175, no. 1, pp. 173-181, 2005. · Zbl 1063.65113 · doi:10.1016/j.cam.2004.06.012
[17] D. P. Sakas and T. E. Simos, “Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation,” Journal of Computational and Applied Mathematics, vol. 175, no. 1, pp. 161-172, 2005. · Zbl 1063.65067 · doi:10.1016/j.cam.2004.06.013
[18] G. Psihoyios and T. E. Simos, “A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions,” Journal of Computational and Applied Mathematics, vol. 175, no. 1, pp. 137-147, 2005. · Zbl 1063.65060 · doi:10.1016/j.cam.2004.06.014
[19] Z. A. Anastassi and T. E. Simos, “An optimized Runge-Kutta method for the solution of orbital problems,” Journal of Computational and Applied Mathematics, vol. 175, no. 1, pp. 1-9, 2005. · Zbl 1063.65059 · doi:10.1016/j.cam.2004.06.004
[20] T. E. Simos, “Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems,” Applied Mathematics Letters, vol. 22, no. 10, pp. 1616-1621, 2009. · Zbl 1171.65449 · doi:10.1016/j.aml.2009.04.008
[21] S. Stavroyiannis and T. E. Simos, “Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs,” Applied Numerical Mathematics, vol. 59, no. 10, pp. 2467-2474, 2009. · Zbl 1169.65324 · doi:10.1016/j.apnum.2009.05.004
[22] T. E. Simos, “Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation,” Acta Applicandae Mathematicae, vol. 110, no. 3, pp. 1331-1352, 2010. · Zbl 1192.65111 · doi:10.1007/s10440-009-9513-6
[23] T. E. Simos and P. S. Williams, “A finite-difference method for the numerical solution of the Schrödinger equation,” Journal of Computational and Applied Mathematics, vol. 79, no. 2, pp. 189-205, 1997. · Zbl 0877.65054 · doi:10.1016/S0377-0427(96)00156-2
[24] T. E. Simos and P. S. Williams, “On finite difference methods for the solution of the Schrödinger equation,” Computers and Chemistry, vol. 23, no. 6, pp. 513-554, 1999. · Zbl 0940.65082 · doi:10.1016/S0097-8485(99)00023-6
[25] J. D. Lambert and I. A. Watson, “Symmetric multistep methods for periodic initial value problems,” Journal of the Institute of Mathematics and its Applications, vol. 18, no. 2, pp. 189-202, 1976. · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[26] L.Gr. Ixaru and M. Micu, Topics in Theoretical Physics, Central Institute of Physics, Bucharest, Romania, 1978.
[27] L. D. Landau and F. M. Lifshitz, Quantum Mechanics, Pergamon, New York, NY, USA, 1965.
[28] T. E. Simos and P. S. Williams, “A new Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation,” MATCH Communications in Mathematical and in Computer Chemistry, no. 45, pp. 123-137, 2002. · Zbl 1026.65054
[29] J. R. Dormand and P. J. Prince, “Runge-Kutta-Nystrom triples,” Computers & Mathematics with Applications, vol. 13, no. 12, pp. 937-949, 1987. · Zbl 0633.65061 · doi:10.1016/0898-1221(87)90066-6
[30] J. R. Dormand, M. E. A. El-Mikkawy, and P. J. Prince, “High-order embedded Runge-Kutta-Nystrom formulae,” IMA Journal of Numerical Analysis, vol. 7, no. 4, pp. 423-430, 1987. · Zbl 0627.65085 · doi:10.1093/imanum/7.4.423
[31] J. R. Dormand, M. E. A. El-Mikkawy, and P. J. Prince, “Families of Runge-Kutta-Nyström formulae,” IMA Journal of Numerical Analysis, vol. 7, no. 2, pp. 235-250, 1987. · Zbl 0624.65059 · doi:10.1093/imanum/7.2.235
[32] G. D. Quinlan and S. Tremaine, “Symmetric multistep methods for the numerical integration of planetary orbits,” Astronomical Journal, vol. 100, no. 5, pp. 1694-1700, 1990.
[33] M. M. Chawla and P. S. Rao, “A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial value problems-II. Explicit method,” Journal of Computational and Applied Mathematics, vol. 15, no. 3, pp. 329-337, 1986. · Zbl 0598.65054 · doi:10.1016/0377-0427(86)90224-4