## Computing the eigenvalues of the generalized Sturm-Liouville problems based on the Lie-group $$SL(2,\mathbb R)$$.(English)Zbl 1247.65102

Summary: For the generalized Sturm-Liouville problems we can construct an $$SL(2,\mathbb R)$$ Lie-group shooting method to find eigenvalues. By using the closure property of the Lie-group, a one-step Lie-group transformation between the boundary values at two ends of the considered interval is established. Hence, we can theoretically derive an analytical characteristic equation to determine the eigenvalues for the generalized Sturm-Liouville problems. Because the closed-form formulas are derived to calculate the unknown left-boundary values in terms of $$\lambda$$, the present method provides an easy numerical implementation and has a cheap computational cost. Numerical examples are examined to show that the present $$SL(2,\mathbb R)$$ Lie-group shooting method is effective.

### MSC:

 65L15 Numerical solution of eigenvalue problems involving ordinary differential equations 34L16 Numerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators
Full Text:

### References:

 [1] Andrew, A. L., Asymptotic correction of computed eigenvalues of differential equations, Ann. Numer. Math., 1, 41-51 (1994) · Zbl 0823.65080 [2] Andrew, A. L., Asymptotic correction of Numerov’s eigenvalue estimates with natural boundary conditions, J. Comput. Appl. Math., 125, 359-366 (2000) · Zbl 0970.65086 [3] Andrew, A. L., Twenty years of asymptotic correction for eigenvalue computation, ANZIAM J., 42, E, C96-C116 (2000) · Zbl 0977.65098 [4] Celik, I., Approximate calculation of eigenvalues with the method of weighted residuals-collocation method, Appl. Math. Comput., 160, 401-410 (2005) · Zbl 1064.65073 [5] Celik, I., Approximate computation of eigenvalues with Chebyshev collocation method, Appl. Math. Comput., 168, 125-134 (2005) · Zbl 1082.65555 [6] Celik, I.; Gokmen, G., Approximate solution of periodic Sturm-Liouville problems with Chebysev collocation method, Appl. Math. Comput., 170, 285-295 (2005) · Zbl 1082.65556 [7] Ghelardoni, P., Approximations of Sturm-Liouville eigenvalues using boundary value methods, Appl. Numer. Math., 23, 311-325 (1997) · Zbl 0877.65056 [8] Ghelardoni, P.; Gheri, G., Improved shooting technique for numerical computations of eigenvalues in Sturm-Liouville problems, Nonlinear Anal., 47, 885-896 (2001) · Zbl 1042.65535 [9] Ghelardoni, P.; Gheri, G.; Marletta, M., A polynomial approach to the spectral corrections for Sturm-Liouville problems, J. Comput. Appl. Math., 185, 360-376 (2006) · Zbl 1092.65064 [10] Vanden Berghe, G.; De Meyer, H., Accurate computation of higher Sturm-Liouville eigenvalues, Numer. Math., 59, 243-254 (1991) · Zbl 0716.65079 [11] Yücel, U., Approximations of Sturm-Liouville eigenvalues using differential quadrature (DQ) method, J. Comput. Appl. Math., 192, 310-319 (2006) · Zbl 1092.65067 [12] Ghelardoni, P.; Gheri, G.; Marletta, M., Spectral corrections for Sturm-Liouville problems, J. Comput. Appl. Math., 132, 443-459 (2001) · Zbl 0988.65057 [13] Liu, C. S., Cone of non-linear dynamical system and group preserving schemes, Int. J. Nonlinear Mech., 36, 1047-1068 (2001) · Zbl 1243.65084 [14] Liu, C. S., The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions, Comp. Model. Eng. Sci., 13, 149-163 (2006) · Zbl 1232.65108 [15] Liu, C. S., Efficient shooting methods for the second order ordinary differential equations, Comp. Model. Eng. Sci., 15, 69-86 (2006) · Zbl 1152.65453 [16] Liu, C. S., The Lie-group shooting method for singularly perturbed two-point boundary value problems, Comp. Model. Eng. Sci., 15, 179-196 (2006) · Zbl 1152.65452 [17] Liu, C. S., Solving an inverse Sturm-Liouville problem by a Lie-group method, Bound. Value Probl., 2008 (2008), Article ID 749865 · Zbl 1154.34005 [18] Liu, C. S., A Lie-group shooting method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems, Comp. Model. Eng. Sci., 26, 157-168 (2008) · Zbl 1232.65110 [19] Liu, C. S., An inverse problem for computing a leading coefficient in the Sturm-Liouville operator by using the boundary data, Appl. Math. Comput., 218, 4245-4259 (2011) · Zbl 1242.65141 [20] Binding, P. A.; Browne, P. J., Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. Roy. Soc. Edinburgh, 127A, 1123-1136 (1997) · Zbl 0894.34018 [21] Aliyev, Y. N.; Kerimov, N., The basis property of Sturm-Liouville problems with boundary conditions depending quadratically on the eigenparameter, Arabian J. Sci. Eng., 33, 123-136 (2008) · Zbl 1189.34160 [22] Chanane, B., Computation of the eigenvalues of Sturm-Liouville problems with parameter dependent boundary conditions using the regularized sampling method, Math. Comp., 74, 1793-1801 (2005) · Zbl 1080.34010 [23] Chanane, B., Sturm-Liouville problems with parameter dependent potential and boundary conditions, J. Comput. Appl. Math., 212, 282-290 (2008) · Zbl 1147.34021 [24] Reutskiy, S. Y., A meshless method for nonlinear, singular and generalized Sturm-Liouville problems, Comp. Model. Eng. Sci., 34, 227-252 (2008) · Zbl 1232.65111 [25] Reutskiy, S. Y., The method of external excitation for solving generalized Sturm-Liouville problems, J. Comput. Appl. Math., 233, 2374-2386 (2010) · Zbl 1183.65099 [26] Liu, C. S., The Lie-group shooting method for computing the generalized Sturm-Liouville problems, Comp. Model. Eng. Sci., 56, 85-112 (2010) · Zbl 1231.65125 [27] Annaby, M. H.; Tharwat, M. M., On sampling theory and eigenvalue problems with an eigenparameter in the boundary conditions, SUT J. Math., 42, 157-175 (2006) · Zbl 1133.34010 [28] Chanane, B., Computing the spectrum of non-self-adjoint Sturm-Liouville problems with parameter-dependent boundary conditions, J. Comput. Appl. Math., 206, 229-237 (2007) · Zbl 1117.65117 [29] Liu, C. S.; Atluri, S. N., A novel fictitious time integration method for solving the discretized inverse Sturm-Liouville problems, for specified eigenvalues, Comp. Model. Eng. Sci., 36, 261-285 (2009) · Zbl 1232.74007 [30] Varner, T. N.; Choudhury, S. R., Non-standard difference schemes for singular perturbation problems revisited, Appl. Math. Comput., 92, 101-123 (1998) · Zbl 0942.65081 [31] Ilicasu, F. O.; Schultz, D. H., High-order finite-difference techniques for linear singular perturbation boundary value problems, Int. J. Comp. Math. Appl., 47, 391-417 (2004) · Zbl 1168.76343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.