Gas storage hedging. (English) Zbl 1247.91203

Carmona, René A. (ed.) et al., Numerical methods in finance. Selected papers based on the presentations at the workshop, Bordeaux, France, June 2010. Berlin: Springer (ISBN 978-3-642-25745-2/hbk; 978-3-642-25746-9/ebook). Springer Proceedings in Mathematics 12, 421-445 (2012).
Summary: Gas storage hedging based on conditional delta is presented in this paper. Algorithms to calculate hedging strategies are detailed. Some numerical results for fast and seasonal storages show the efficiency of the method compared with finite difference.
For the entire collection see [Zbl 1238.91005].


91G60 Numerical methods (including Monte Carlo methods)
91G99 Actuarial science and mathematical finance
Full Text: DOI


[1] Bardou, O.; Bouthemy, S.; Pagès, G., When are Swing options bang-bang, International Journal of Theoretical and Applied Finance, 13, 6, 867-899 (2010) · Zbl 1233.91255
[2] Barrera-Esteve, C.; Bergeret, F.; Gobet, E., Numerical methods for the pricing of Swing options, a stochastic approach, Methodology and Computing in Applied Probability, 8, 4, 517-540 (2006) · Zbl 1142.91502
[3] Bellman, RE, Dynamic programming (1957), Princeton: Princeton University Press, Princeton · Zbl 0077.13605
[4] F. E. Benth, J. S. Benth, S. Koekebakker: Stochastic modelling of electricity and related market, World Scientific (2008) · Zbl 1143.91002
[5] Bouchard, B.; Warin, X., Monte-Carlo valorisation of American options: facts and new algorithms to improve existing methods (2010), Springer: Numerical methods in finance, Springer
[6] Chen, Z.; Forsyth, PA, A semi-Lagrangian approach for natural gas storage valuation and optimal operation, SIAM Journal of Scientific Computing, 30, 339-368 (2007) · Zbl 1159.65352
[7] L. Clewlow, C. Strickland: Energy derivatives: Pricing and risk management, Lacima (2000)
[8] Detemple, J.; Garcia, R.; Rindisbacher, M., Asymptotic Properties of Monte Carlo Estimators of Derivatives, Management science, 51, 11, 1657-1675 (2005) · Zbl 1232.91702
[9] Eydeland, A.; Wolyniec, K., Energy and Power Risk Management: New Developments in Modeling (2003), Hoboken, NJ: Pricing and Hedging. John Wiley & Sons, Hoboken, NJ
[10] Hayashi, T.; Mykland, PA, Hedging errors: an asymptotic approach, Mathematical Finance, 15, 309-408 (2005) · Zbl 1153.91505
[11] G. Hirsch: Pricing of hourly exercisable electricity Swing options using different price processes. The Journal of Energy Market, 2(2) (2009)
[12] Jaillet, P.; Ronn, R.; Tompaidis, S., Valuation of commodity-based Swing options, Management science, 50, 909-921 (2004) · Zbl 1232.90340
[13] Longstaff, F.; Schwartz, E., Valuing American options by simulation: A simple least-squares, Review of Financial Studies, 1, 14, 113-147 (2001)
[14] Carmona, R.; Ludkovski, M., Valuation of Energy Storage: An Optimal Switching Approach, Quantitative Finance, 10, 4, 359-374 (2010) · Zbl 1203.91286
[15] B. Øksendal, A Sulem: Applied stochastic Control of jump diffusions. Springer (2005) · Zbl 1074.93009
[16] Pereira, MVF; Pinto, LMVG, Multi-stage stochastic optimization applied to energy planning, Mathematical Programming, 52, 359-375 (1991) · Zbl 0749.90057
[17] Pham, H., On some recent aspects of stochastic control and their applications, Probability Surveys, 2, 506-549 (2005) · Zbl 1189.93146
[18] Schwartz, ES, The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging, Journal of Finance, 52, 923-973 (1997)
[19] Scott, TJ; Read, EG, Modelling hydro reservoir operation in a deregulated electricity market, International Transactions in Operational Research, 3, 3, 243-254 (1996) · Zbl 0874.90122
[20] T. Scott, QEM storage, http://www.quantmodels.co.uk/QEMStorage.html
[21] Wilhelm, M.; Winter, C., Finite Element valuation of Swing options, Journal of Computational Finance, 11, 3, 107-132 (2008)
[22] R. Zhang: Couverture approchée des options Europennes. Phd thesis, Ecole Nationale des Ponts et Chaussées (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.