Two-stage least squares based iterative identification algorithm for controlled autoregressive moving average (CARMA) systems.(English)Zbl 1247.93018

Summary: A two-stage least squares based iterative (two-stage LSI) identification algorithm is derived for controlled autoregressive moving average (CARMA) systems. The basic idea is to decompose a CARMA system into two subsystems and to identify each subsystem, respectively. Because the dimensions of the involved covariance matrices in each subsystem become small, the proposed algorithm has a high computational efficiency. The simulation results indicate that the proposed algorithm is effective.

MSC:

 93E24 Least squares and related methods for stochastic control systems 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62F10 Point estimation 65F25 Orthogonalization in numerical linear algebra 93E10 Estimation and detection in stochastic control theory

CARMA
Full Text:

References:

 [1] Dehghan, M.; Hajarian, M., Matrix equations over (R,S)-symmetric and (R,S)-skew symmetric matrices, Computers & Mathematics with Applications, 59, 11, 3583-3594 (2010) · Zbl 1202.15017 [2] Dehghan, M.; Hajarian, M., An iterative algorithm for solving a pair of matrix equations AYB $$=$$ E, CYD $$=F$$ over generalized centro-symmetric matrices, Computers & Mathematics with Applications, 56, 12, 3246-3260 (2008) · Zbl 1165.15301 [3] Dehghan, M.; Hajarian, M., An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Applied Mathematical Modelling, 34, 3, 639-654 (2010) · Zbl 1185.65054 [4] Dehghan, M.; Hajarian, M., Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B $$1 +$$ A2X2B $$2 = C$$, Mathematical and Computer Modelling, 49, 9-10, 1937-1959 (2009) · Zbl 1171.15310 [5] Xie, L.; Ding, J.; Ding, F., Gradient based iterative solutions for general linear matrix equations, Computers & Mathematics with Applications, 58, 7, 1441-1448 (2009) · Zbl 1189.65083 [6] Ding, J.; Liu, Y. J.; Ding, F., Iterative solutions to matrix equations of form AiXBi $$=$$ Fi, Computers & Mathematics with Applications, 59, 11, 3500-3507 (2010) · Zbl 1197.15009 [7] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE Transactions on Automatic Control, 50, 8, 1216-1221 (2005) · Zbl 1365.65083 [8] Xie, L.; Ding, J.; Ding, F., Gradient based iterative solutions for general linear matrix equations, Computers and Mathematics with Applications, 58, 7, 1441-1448 (2009) · Zbl 1189.65083 [9] Wu, A. G.; Li, B.; Yang, Y.; Duan, G. R., Finite iterative solutions to coupled Sylvester-conjugate matrix equations, Applied Mathematical Modelling, 35, 3, 1065-1080 (2011) · Zbl 1211.15024 [10] Shi, Y.; Fang, H., Kalman filter based identification for systems with randomly missing measurements in a network environment, International Journal of Control, 83, 3, 538-551 (2010) · Zbl 1222.93228 [11] Shi, Y.; Fang, H.; Yan, M., Kalman filter based adaptive control for networked systems with unknown parameters and randomly missing outputs, International Journal of Robust and Nonlinear Control, 19, 18, 1976-1992 (2009), (special issue on control with limited information (part II)) · Zbl 1192.93118 [12] Yu, B.; Shi, Y.; Huang, H., l-2 and $$l$$-infnity filtering for multirate systems using lifted models, Circuits, Systems, and Signal Processing, 27, 5, 699-711 (2008) [13] Fang, H.; Wu, J.; Shi, Y., Genetic adaptive state estimation with missing input/output data, Proceedings of the Institution of Mechanical Engineers-Part I: Journal of Systems and Control Engineering, 224, 5, 611-617 (2010) [14] Shi, Y.; Ding, F.; Chen, T., 2-norm based recursive design of transmultiplexers with designable filter length, Circuits, Systems and Signal Processing, 25, 4, 447-462 (2006) · Zbl 1130.94312 [15] Xiao, Y. S.; Zhang, Y.; Ding, J.; Dai, J. Y., The residual based interactive least squares algorithms and simulation studies, Computers & Mathematics with Applications, 58, 6, 1190-1197 (2009) · Zbl 1189.62149 [16] Wang, L. Y.; Xie, L.; Wang, X. F., The residual based interactive stochastic gradient algorithms for controlled moving average models, Applied Mathematics and Computation, 211, 2, 442-449 (2009) · Zbl 1162.93037 [17] Ding, F.; Chen, T.; Qiu, L., Bias compensation based recursive least squares identification algorithm for MISO systems, IEEE Transactions on Circuits and Systems - II: Express Briefs, 53, 5, 349-353 (2006) [18] Ding, F.; Shi, Y.; Chen, T., Performance analysis of estimation algorithms of non-stationary ARMA processes, IEEE Transactions on Signal Processing, 54, 3, 1041-1053 (2006) · Zbl 1373.94569 [19] Ding, F.; Liu, P. X.; Liu, G. L., Gradient based and least-squares based iterative identification methods for OE and OEMA systems, Digital Signal Processing, 20, 3, 664-677 (2010) [20] Wang, D. Q.; Yang, G. W.; Ding, R. F., Gradient-based iterative parameter estimation for Box-Jenkins systems, Computers & Mathematics with Applications, 60, 5, 1200-1208 (2010) · Zbl 1201.94046 [21] Liu, Y. J.; Wang, D. Q.; Ding, F., Least squares based iterative identification for identifying Box-Jenkins models with finite measurement date, Digital Signal Processing, 20, 5, 1458-1467 (2010) [22] Ding, F.; Chen, T., Identification of Hammerstein nonlinear ARMAX systems, Automatica, 41, 9, 1479-1489 (2005) · Zbl 1086.93063 [23] Han, H. Q.; Xie, L.; Ding, F.; Liu, X. G., Hierarchical least-squares based iterative identification for multivariable systems with moving average noises, Automatica, 51, 9-10, 1213-1220 (2010) · Zbl 1198.93216 [24] Zhang, Z. N.; Ding, F.; Liu, X. G., Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems, Computers & Mathematics with Applications, 61, 3, 672-682 (2011) · Zbl 1217.15022 [25] Bao, B.; Xu, Y. Q.; Sheng, J.; Ding, R. F., Least squares based iterative parameter estimation algorithm for multivariable controlled ARMA system modelling with finite measurement data, Mathematical and Computer Modelling, 53, 9-10, 1664-1669 (2011) · Zbl 1219.62133 [27] Bai, E. W., An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems, Automatica, 34, 3, 333-338 (1998) · Zbl 0915.93018 [28] Li, K.; Peng, J. X.; Bai, E., A two-stage algorithm for identification of nonlinear dynamic systems, Automatica, 42, 7, 1189-1197 (2006) · Zbl 1117.93314 [29] Hwang, S. H.; Lai, S. T., Use of two-stage least-squares algorithms for identification of continuous systems with time delay based on pulse responses, Automatica, 40, 9, 1561-1568 (2004) · Zbl 1055.93506 [30] Cao, Z. H., Rounding error analysis of two-stage iterative methods for large linear systems, Applied Mathematics and Computation, 139, 2-3, 371-381 (2003) · Zbl 1029.65026 [31] Duan, H. H.; Jia, J.; Ding, R. F., Two-stage recursive least squares parameter estimation algorithm for output error models, Mathematical and Computer Modelling, 55, x (2012) · Zbl 1255.93133 [32] Wang, D. Q.; Ding, F., Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems, Computers & Mathematics with Applications, 56, 12, 3157-3164 (2008) · Zbl 1165.65308 [33] Chen, J.; Zhang, Y.; Ding, R. F., Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems, Mathematical and Computer Modelling, 52, 9-10, 1428-1434 (2010) · Zbl 1205.93142 [34] Wang, D. Q., Least squares-based recursive and iterative estimation for output error moving average (OEMA) systems using data filtering, IET Control Theory and Applications, 5, 14, 1648-1657 (2011) [35] Wang, D. Q.; Ding, F., Input-output data filtering based recursive least squares parameter estimation for CARARMA systems, Digital Signal Processing, 20, 4, 991-999 (2010) [36] Han, L. L.; Ding, F., Parameter estimation for multirate multi-input systems using auxiliary model and multi-innovation, Journal of Systems Engineering and Electronics, 21, 6, 1079-1083 (2010) [37] Han, L. L.; Ding, F., Identification for multirate multi-input systems using the multi-innovation identification theory, Computers & Mathematics with Applications, 57, 9, 1438-1449 (2009) · Zbl 1186.93076 [38] Ding, F.; Chen, T., Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica, 40, 10, 1739-1748 (2004) · Zbl 1162.93376 [39] Ding, F.; Chen, T., Identification of dual-rate systems based on finite impulse response models, International Journal of Adaptive Control and Signal Processing, 18, 7, 589-598 (2004) · Zbl 1055.93018 [40] Ding, F.; Chen, T., Least squares based self-tuning control of dual-rate systems, International Journal of Adaptive Control and Signal Processing, 18, 8, 697-714 (2004) · Zbl 1055.93044 [41] Ding, F.; Chen, T., Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE Transactions on Automatic Control, 50, 9, 1436-1441 (2005) · Zbl 1365.93480 [42] Liu, Y. J.; Sheng, J.; Ding, R. F., Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems, Computers & Mathematics with Applications, 59, 8, 2615-2627 (2010) · Zbl 1193.60057 [43] Ding, F.; Chen, T., Performance analysis of multi-innovation gradient type identification methods, Automatica, 43, 1, 1-14 (2007) · Zbl 1140.93488 [44] Liu, Y. J.; Xiao, Y. S.; Zhao, X. L., Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Applied Mathematics and Computation, 215, 4, 1477-1483 (2009) · Zbl 1177.65095 [45] Ding, F.; Liu, P. X.; Liu, G., Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal Processing, 89, 10, 1883-1890 (2009) · Zbl 1178.94137 [46] Zhang, J. B.; Ding, F.; Shi, Y., Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems & Control Letters, 58, 1, 69-75 (2009) · Zbl 1154.93040 [47] Ding, F.; Liu, P. X.; Liu, G., Multi-innovation least squares identification for system modeling, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40, 3, 767-778 (2010) [48] Ding, F., Several multi-innovation identification methods, Digital Signal Processing, 20, 4, 1027-1039 (2010) [49] Wang, D. Q.; Ding, F., Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems, Digital Signal Processing, 20, 3, 750-762 (2010) [50] Xie, L.; Yang, H. Z.; Ding, F., Modeling and identification for non-uniformly periodically sampled-data systems, IET Control Theory & Applications, 4, 5, 784-794 (2010) [51] Han, L. L.; Ding, F., Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital Signal Processing, 19, 4, 545-554 (2009) [52] Liu, Y. J.; Yu, L.; Ding, F., Multi-innovation extended stochastic gradient algorithm and its performance analysis, Circuits, Systems and Signal Processing, 29, 4, 649-667 (2010) · Zbl 1196.94026 [53] Ding, F.; Chen, T., Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica, 41, 2, 315-325 (2005) · Zbl 1073.93012 [54] Ding, F.; Chen, T., Hierarchical least squares identification methods for multivariable systems, IEEE Transactions on Automatic Control, 50, 3, 397-402 (2005) · Zbl 1365.93551 [55] Ding, F.; Chen, T., Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE Transactions on Circuits and Systems—I: Regular Papers, 52, 6, 1179-1187 (2005) · Zbl 1374.93342 [56] Ding, F.; Chen, T., A gradient based adaptive control algorithm for dual-rate systems, Asian Journal of Control, 8, 4, 314-323 (2006) [57] Ding, F.; Chen, T.; Iwai, Z., Adaptive digital control of Hammerstein nonlinear systems with limited output sampling, SIAM Journal on Control and Optimization, 45, 6, 2257-2276 (2007) · Zbl 1126.93034 [58] Ding, F.; Qiu, L.; Chen, T., Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica, 45, 2, 324-332 (2009) · Zbl 1158.93365 [59] Liu, Y. J.; Xie, L.; Ding, F., An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 223, 4, 445-454 (2009) [60] Ding, F.; Liu, G.; Liu, X. P., Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE Transactions on Automatic Control, 55, 8, 1976-1981 (2010) · Zbl 1368.93121 [61] Ding, F.; Ding, J., Least squares parameter estimation with irregularly missing data, International Journal of Adaptive Control and Signal Processing, 24, 7, 540-553 (2010) · Zbl 1200.93130 [62] Ding, F.; Liu, G.; Liu, X. P., Parameter estimation with scarce measurements, Automatica, 47, 8, 1646-1655 (2011) · Zbl 1232.62043 [63] Xie, L.; Yang, H. Z.; Ding, F., Recursive least squares parameter estimation for non-uniformly sampled systems based on the data filtering, Mathematical and Computer Modelling, 54, 1-2, 315-324 (2011) · Zbl 1225.62120 [64] Chen, J.; Ding, F., Modified stochastic gradient algorithms with fast convergence rates, Journal of Vibration and Control, 17, 9, 1281-1286 (2011) · Zbl 1271.93043 [65] Ding, J.; Shi, Y.; Wang, H. G.; Ding, F., A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems, Digital Signal Processing, 20, 4, 1238-1249 (2010) [66] Ding, F.; Liu, P. X.; Yang, H. Z., Parameter identification and intersample output estimation for dual-rate systems, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 38, 4, 966-975 (2008) [67] Ding, F.; Yang, H. Z.; Liu, F., Performance analysis of stochastic gradient algorithms under weak conditions, Science in China Series F: Information Sciences, 51, 9, 1269-1280 (2008) · Zbl 1145.93050 [68] Ding, F.; Chen, T., Performance bounds of the forgetting factor least squares algorithm for time-varying systems with finite measurement data, IEEE Transactions on Circuits and Systems—I: Regular Papers, 52, 3, 555-566 (2005) · Zbl 1374.93390 [69] Wang, W.; Ding, F.; Dai, J. Y., Maximum likelihood least squares identification for systems with autoregressive moving average noise, Applied Mathematical Modelling, 36, x (2012) · Zbl 1242.62105 [70] Ding, J.; Ding, F.; Liu, X. P.; Liu, G., Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data, IEEE Transactions on Automatic Control, 56, 11, 2677-2683 (2011) · Zbl 1368.93744 [71] Ding, J.; Ding, F., Bias compensation based parameter estimation for output error moving average systems, International Journal of Adaptive Control and Signal Processing, 25, 12, 1100-1111 (2011) · Zbl 1263.93215 [72] Zhuang, L. F.; Pan, F.; Ding, F., Parameter and state estimation algorithm for single-input single-output linear systems using the canonical state space models, Applied Mathematical Modelling, 26, x (2012) · Zbl 1252.93045 [73] Li, J. H.; Ding, F., Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique, Computers & Mathematics with Applications, 62, 11, 4170-4177 (2011) · Zbl 1236.93150 [74] Ding, F.; Liu, P. X.; Liu, G., Identification methods for Hammerstein nonlinear systems, Digital Signal Processing, 21, 2, 215-238 (2011) [75] Wang, D. Q.; Chu, Y. Y.; Ding, F., Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems, Computers & Mathematics with Applications, 59, 9, 3092-3098 (2010) · Zbl 1193.93170 [76] Wang, D. Q.; Chu, Y. Y.; Yang, G. W.; Ding, F., Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems, Mathematical and Computer Modelling, 52, 1-2, 309-317 (2010) · Zbl 1201.93134 [77] Wang, D. Q.; Ding, F., Least squares based and gradient based iterative identification for Wiener nonlinear systems, Signal Processing, 91, 5, 1182-1189 (2011) · Zbl 1219.94052 [78] Ding, F.; Shi, Y.; Chen, T., Auxiliary model based least-squares identification methods for Hammerstein output-error systems, Systems & Control Letters, 56, 5, 373-380 (2007) · Zbl 1130.93055 [79] Ding, F.; Shi, Y.; Chen, T., Gradient-based identification methods for Hammerstein nonlinear ARMAX models, Nonlinear Dynamics, 45, 1-2, 31-43 (2006) · Zbl 1134.93321 [80] Wang, D. Q.; Ding, F., Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems, Computers & Mathematics with Applications, 56, 12, 3157-3164 (2008) · Zbl 1165.65308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.