Wang, Pei; Li, Damei; Wu, Xiaoqun; Lü, Jinhu; Yu, Xinghuo Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems. (English) Zbl 1248.34084 Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, No. 9, 2679-2694 (2011). Summary: This paper aims to propose a unified approach for the ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems (HDQADS). Using the proposed method and the optimization idea, a sufficient condition is then given for estimating the ultimate bounds of a class of HDQADS. To validate the above sufficient condition, this paper further investigates the ultimate bound estimation of a hyperchaotic system, a 6D and a 9D chaotic system, separately. Moreover, the ultimate bounds for a general Lorenz system, a low-order atmospheric circulation model, and a new 3D chaotic system are also discussed in detail. In particular, it should be pointed out that a unified and accurate ultimate bound estimation is attained for the generalized Lorenz system and it includes several well-known results as its special cases. Some numerical simulations are also given to verify and visualize the corresponding theoretical results. Cited in 1 ReviewCited in 28 Documents MSC: 34D45 Attractors of solutions to ordinary differential equations 34C11 Growth and boundedness of solutions to ordinary differential equations 34C28 Complex behavior and chaotic systems of ordinary differential equations Keywords:ultimate bound estimation; high dimensional quadratic autonomous systems; chaos; optimization PDF BibTeX XML Cite \textit{P. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, No. 9, 2679--2694 (2011; Zbl 1248.34084) Full Text: DOI References: [1] DOI: 10.1142/S0218127402005467 · Zbl 1043.37023 [2] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013 [3] DOI: 10.1016/0005-1098(92)90177-H · Zbl 0765.93030 [4] DOI: 10.1016/j.chaos.2007.12.003 · Zbl 1198.37045 [5] DOI: 10.1134/S0012266109010054 · Zbl 1183.34061 [6] DOI: 10.1007/s10625-006-0003-6 · Zbl 1133.34342 [7] DOI: 10.1002/zamm.19870671215 · Zbl 0653.34040 [8] DOI: 10.1016/S0021-8928(01)00004-1 [9] Leonov G., Canadian Appl. Math. Quart. 17 pp 121– [10] DOI: 10.1016/j.chaos.2004.05.021 · Zbl 1061.93506 [11] DOI: 10.1016/j.jmaa.2005.11.008 · Zbl 1104.37024 [12] Li D., Dyn. Contin. Discret. Impul. Syst. B 14 pp 63– [13] DOI: 10.1016/j.chaos.2009.03.194 · Zbl 1198.34100 [14] DOI: 10.1016/j.chaos.2007.06.038 · Zbl 1197.37034 [15] Liao X., Sci. China Ser. E 34 pp 1404– [16] DOI: 10.1007/s11432-008-0024-2 · Zbl 1148.37025 [17] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 [18] DOI: 10.1142/S0218127402004620 · Zbl 1063.34510 [19] DOI: 10.1142/S021812740200631X · Zbl 1043.37026 [20] Lü J., Chin. Phys. 11 pp 12– [21] DOI: 10.1142/S021812740401014X · Zbl 1129.37323 [22] DOI: 10.1142/S0218127406015179 · Zbl 1097.94038 [23] DOI: 10.1088/0951-7715/16/5/303 · Zbl 1050.34078 [24] DOI: 10.1016/j.physa.2004.12.040 [25] DOI: 10.1016/j.chaos.2007.01.029 · Zbl 1146.37332 [26] DOI: 10.1088/0305-4470/31/34/015 · Zbl 0949.76080 [27] DOI: 10.1142/S0218127495001253 · Zbl 0922.76197 [28] Shu Y., J. East. China Normal Univ. Natural Sci. Ser. 1 pp 62– [29] DOI: 10.1088/0031-8949/53/1/015 [30] DOI: 10.1142/S0218127408022391 · Zbl 1165.34355 [31] DOI: 10.1016/j.cnsns.2009.09.015 · Zbl 1222.37036 [32] DOI: 10.1016/j.cnsns.2006.11.003 · Zbl 1221.37072 [33] DOI: 10.1016/j.cnsns.2008.10.008 · Zbl 1221.37047 [34] DOI: 10.1063/1.2336739 · Zbl 1151.94432 [35] DOI: 10.1109/TCSI.2007.904651 · Zbl 1374.94933 [36] Zhou T., Int. J. Bifurcation and Chaos 9 pp 2561– This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.