Positive periodic solutions of delayed differential equations. (English) Zbl 1248.34104

Summary: In this paper, we are concerned with the existence, multiplicity and nonexistence of positive ?-periodic solutions of the following equation \[ u''(t)+ a(t,u) u(t)=\lambda b(t) f(u(t-\tau(t))),\quad t\in\mathbb{R}, \] where \(a(\cdot,\cdot)\in C(\mathbb{R}\times\mathbb{R}, \mathbb{R}^+)\) is a \(\omega\)-periodc function with respect to the first variable, \(b(\cdot)\in C(\mathbb{R},[0,\infty))\), \(\tau(\cdot)\in C(\mathbb{R}, \mathbb{R})\) are \(\omega\)-periodic functions, \(f\in C([0,\infty), [0,\infty))\) and \(f(s)> 0\) for \(s> 0\), \(\lambda> 0\) is a parameter. The proof of our main result is based upon fixed point index theory.


34K13 Periodic solutions to functional-differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI


[1] Chu, J.; Torres, P.J.; Zhang, M., Periodic solution of second order non-autonomous singular dynamical systems, J. differ. eqs., 239, 196-212, (2007) · Zbl 1127.34023
[2] Franco, D.; Torres, P.J., Periodic solution of singular systems without the strong force condition, Proc. am. math. soc., 136, 1229-1236, (2008) · Zbl 1129.37033
[3] Jiang, D.; Chu, J.; Zhang, M., Multiplicity of positive periodic solution to superlinear repulsive singular equation, J. differ. eqs., 211, 282-302, (2005) · Zbl 1074.34048
[4] Torres, P.J.; Zhang, M., A monotone scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Mathematische nachrichten, 251, 101-107, (2003) · Zbl 1024.34030
[5] Freedman, H.I.; Wu, J., Periodic solutions of single-species models with periodic delay, SIAM J. math. anal., 23, 689-701, (1992) · Zbl 0764.92016
[6] Wu, J.; Wang, Z., Positive periodic solutions of second-order nonlinear differential systems with two parameters, Comput. math. appl., 56, 43-54, (2008) · Zbl 1145.34333
[7] Cheng, S.; Zhang, G., Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. differ. eqs., 59, 1-8, (2001)
[8] Torres, P.J., Existence of one-signed periodic solution of some second order differential equations via a Krasnoselskii fixed point theorem, J. differ. eqs., 190, 643-662, (2003) · Zbl 1032.34040
[9] R.Y. Ma, C.H. Gao, R.P. Chen, Existence of positive solutions of nonlinear second-order periodic boundary value problems, Boundary value problems, Article ID 626054, p. 18, 2010.
[10] Guo, C.J.; Guo, Z.M., Existence of multiple periodic solutions for a class of second-order delay differential equations, Nonlinear anal. real world appl., 10, 3285-3297, (2009) · Zbl 1190.34083
[11] Ye, D.; Fan, M.; Wang, H., Periodic solutions for scalar functional differential equations, Nonlinear anal., 62, 1157-1181, (2005) · Zbl 1089.34056
[12] Li, Y.; Fan, X.; Zhao, L., Positive periodic solutions of functional differential equations with impulses and a parameter, Comput. math. appl., 56, 2556-2560, (2008) · Zbl 1165.34401
[13] Jin, Z.L.; Wang, H.Y., A note on positive periodic solutions of delayed differential equations, Appl. math. lett., 23, 581-584, (2010) · Zbl 1194.34130
[14] M. Zhang, Optimal conditions for maximum and antimaximum principle of the periodic solutions problem, Boundary value problems, Article ID 410986, p. 26, 2010.
[15] Wang, H.Y., Positive periodic solutions of functional differential systems, J. differ. eqs., 202, 354-366, (2004) · Zbl 1064.34052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.