zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent stochastic stability criteria for Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates. (English) Zbl 1248.34123
This paper examines delay-dependent stochastic stability for Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates of the form $$\multline \dot{z}(t)=-A(r(t))z(t)+B(r(t))f(z(t))+C(r(t))f(z(t-h(r(t), t)))\\ +D(r(t))\int^t_{t-d(r(t), t)}f(z(s))ds. \endmultline$$ By means of a Lyapunov functional and LMI techniques, this paper establishes some stochastic stability criteria. A numerical example is presented to illustrated these results.
Reviewer: Fuke Wu (Wuhan)

MSC:
34K50Stochastic functional-differential equations
34K20Stability theory of functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Cao, J.; Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE trans. Neural netw. 13, 457-463 (2002)
[2] Arik, S.; Tavsanoglu, V.: Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays. Neurocomputing 68, 161-176 (2005)
[3] Tian, J.; Zhou, X.: Improved asymptotic stability criteria for neural networks with interval time-varying delay. Expert syst. Appl. 37, 7521-7525 (2010)
[4] He, Y.; Liu, G. P.; Rees, D.: New delay-dependent stability criteria for neural networks with time-varying delay. IEEE trans. Neural netw. 18, 310-314 (2007)
[5] Li, T.; Luo, Q.; Sun, C. Y.; Zhang, B. Y.: Exponential stability of recurrent neural networks with time-varying discrete and distributed delays. Nonlinear anal. Real world appl. 10, 2581-2589 (2009) · Zbl 1163.92302
[6] Kwon, O. M.; Park, J. H.: Exponential stability analysis for uncertain neural networks with interval time-varying delays. Appl. math. Comput. 212, 530-541 (2009) · Zbl 1179.34080
[7] Song, Q. K.: Exponential stability of recurrent neural networks with both time-varying delays and general activation functions via LMI approach. Neurocomputing 71, 2823-2830 (2008)
[8] Samli, R.; Arik, S.: New results for global stability of a class of neutral-type neural systems with time delays. Appl. math. Comput. 210, 564-570 (2009) · Zbl 1170.34352
[9] Park, J. H.; Kwon, O. M.: Further results on state estimation for neural networks of neutral-type with time-varying delay. Appl. math. Comput. 208, 69-75 (2009) · Zbl 1169.34334
[10] Kwon, O. M.; Park, J. H.: Improved delay-dependent stability criterion for neural networks with time-varying delays. Phys. lett. A 373, 529-535 (2009) · Zbl 1227.34030
[11] Sun, J.; Liu, G. P.; Chen, J.; Rees, D.: Improved stability criteria for neural networks with time-varying delay. Phys. lett. A 373, 342-348 (2009) · Zbl 1227.92003
[12] Liu, Y.; Wang, Z.; Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural netw. 19, 667-675 (2006) · Zbl 1102.68569
[13] Balasubramaniam, P.; Ali, M. Syed; Arik, Sabri: Global asymptotic stability of stochastic fuzzy cellular neural networks with multiple time-varying delays. Expert syst. Appl. 37, 7737-7744 (2010)
[14] Tian, J.; Zhong, S.: Improved delay-dependent stability criterion for neural networks with time-varying delay. Appl. math. Comput. 217, 10278-10288 (2011) · Zbl 1225.34080
[15] Tian, J.; Zhong, S.: New delay-dependent exponential stability criteria for neural networks with discrete and distributed time-varying delays. Neurocomputing 74, 3365-3375 (2011)
[16] Zheng, C. D.; Lu, L. B.; Wang, Z. S.: New LMI based delay-dependent criterion for global asymptotic stability of cellular neural networks. Neurocomputing 72, 3331-3336 (2009)
[17] Xu, S.; Lam, J.: A new approach to exponential stability analysis of neural networks with time-varying delays. Neural netw. 19, 76-83 (2006) · Zbl 1093.68093
[18] Song, Q.; Zhang, J.: Global exponential stability of impulsive Cohen -- Grossberg neural network with time-varying delays. Nonlinear anal. Real world appl. 9, 500-510 (2008) · Zbl 1142.34046
[19] Wang, Z.; Liu, Y.; Li, M.; Liu, X.: Stability analysis for stochastic Cohen -- Grossberg neural networks with mixed time delays. IEEE trans. Neural netw. 17, 814-820 (2006)
[20] Park, J. H.; Kwon, O. M.: On improved delay-dependent criterion for global stability of bidirectional associative memory neural networks with timevarying delays. Appl. math. Comput. 199, 435-446 (2008) · Zbl 1149.34049
[21] Tian, J.; Xie, X.: New asymptotic stability criteria for neural networks with time-varying delay. Phys. lett. A 374, 938-943 (2010) · Zbl 1235.92007
[22] Mou, S.; Gao, H.; Lam, J.; Qiang, W.: New criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay. IEEE trans. Neural netw. 19, 532-535 (2008)
[23] Ma, L.; Da, F.: Mean-square exponential stability of stochastic Hopfield neural networks with time-varying discrete and distributed delays. Phys. lett. A 373, 2154-2161 (2009) · Zbl 1229.92006
[24] Kwon, O. M.; Lee, S. M.; Park, J. H.: Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays. Phys. lett. A 374, 1232-1241 (2010) · Zbl 1236.92006
[25] Kwon, O. M.; Park, J. H.: New delay-dependent robust stability criterion for uncertain neural networks with time-varying delays. Appl. math. Comput. 205, 417-427 (2008) · Zbl 1162.34060
[26] Lee, S. M.; Kwon, O. M.; Park, J. H.: A novel delay-dependent criterion for delayed neural networks of neutral type. Phys. lett. A 374, 1843-1848 (2010) · Zbl 1236.92007
[27] Lee, S. M.; Kwon, O. M.; Park, J. H.: A new approach to stability analysis of neural networks with time-varying delay via novel Lyapunov -- Krasovskiń≠ function. Chinese phys. B 19, 050507 (2010)
[28] Mahmoud, M. S.; Shi, P.; Stability, Robust: Stabilization and H$\infty $ control of time-delay systems with Markovian jump parameters. Int. J. Robust nonlinear control 13, 755-784 (2003) · Zbl 1029.93063
[29] L. Xie, Stochastic robust stability analysis for Markovian jumping neural networks with time delays, in: Proceedings IEEE International Conference on Networking, Sensing and Control, vol. 22, 2005, pp. 923 -- 928. · Zbl 1112.35092
[30] Wang, Z.; Liu, Y.; Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural netw. 22, 41-48 (2009)
[31] Lou, X.; Cui, B.: Delay-dependent stochastic stability of delayed Hopfield neural networks with Markovian jump parameters. J. math. Anal. appl. 328, 316-326 (2007) · Zbl 1132.34061
[32] Liu, H.; Ou, Y.; Hu, J.; Liu, T.: Delay-dependent stability analysis for continuous -- time BAM neural networks with Markovian jumping parameters. Neural netw. 23, 315-321 (2010)
[33] Han, W.; Liu, Y.; Wang, L.: Robust exponential stability of Markovian jumping neural networks with mode-dependent delay. Commun. nonlinear sci. Numer. simul. 15, 2529-2535 (2010) · Zbl 1222.93231
[34] Li, H.; Chen, B.; Zhou, Q.; Lin, C.: Robust exponential stability for delayed uncertain Hopfield neural networks with Markovian jumping parameters. Phys. lett. A 372, 4996-5003 (2008) · Zbl 1221.92006
[35] Liu, H.; Zhao, L.; Zhang, Z.; Ou, Y.: Stochastic stability of Markovian jumping Hopfield neural networks with constant and distributed delays. Neurocomputing 72, 3669-3674 (2009)
[36] Wang, L.; Zhang, Z.; Wang, Y.: Stochastic exponential stability of the delayed reaction -- diffusion recurrent neural networks with Markovian jumping parameters. Phys. lett. A 372, 3201-3209 (2008) · Zbl 1220.35090
[37] Bao, H.; Cao, J.: Stochastic global exponential stability for neutral-type impulsive neural networks with mixed time-delays and Markovian jumping parameters. Commun. nonlinear sci. Numer. simul. 16, 3786-3791 (2011) · Zbl 1227.34079
[38] Zhu, Q.; Cao, J.: Stability analysis for stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays. Neurocomputing 73, 2671-2680 (2010)
[39] Park, P. G.; Ko, J. W.; Jeong, C. K.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235-238 (2011) · Zbl 1209.93076
[40] K. Gu, An integral inequality in the stability problem of time delay systems, in: Proceedings of the 39th IEEE Conference on Decision Control, 2000, pp. 2805 -- 2810.