zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The bifurcation and exact peakons, solitary and periodic wave solutions for the Kudryashov-Sinelshchikov equation. (English) Zbl 1248.35174
Summary: In this paper, the Kudryashov-Sinelshchikov equation is studied by using the bifurcation method of dynamical systems and the method of phase portraits analysis. From a dynamic point of view, the existence of peakon, solitary wave, smooth and non-smooth periodic waves is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given. Also, some new exact travelling wave solutions are presented through some special phase orbits.

MSC:
35Q51Soliton-like equations
35C08Soliton solutions of PDE
35C07Traveling wave solutions of PDE
35B32Bifurcation (PDE)
WorldCat.org
Full Text: DOI
References:
[1] Kudryashov, N. A.; Sinelshchikov, D. I.: Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer, Phys lett A 374, 2011-2016 (2010) · Zbl 1236.76075
[2] Kudryashov, N. A.; Sinelshchikov, D. I.: Nonlinear evolution equations for describing waves in bubbly liquids with viscosity and heat transfer consideration, Appl math comput 217, 414-421 (2010) · Zbl 1273.76407
[3] Kudryashov, N. A.; Sinelshchikov, D. I.: Nonlinear waves in liquids with gas bubbles with account of viscosity and heat transfer, Fluid dynam 45, 96-112 (2010) · Zbl 1215.76103 · doi:10.1134/S0015462810010114
[4] Randrüüt, M.: On the kudryashov -- sinelshchikov equation for waves in bubbly liquids, Phys lett A 375, 3687-3692 (2011) · Zbl 1252.76016
[5] Ryabov, P. N.: Exact solutions of the kudryashov and sinelshchikov equation, Appl math comput 217, 3585-3590 (2010) · Zbl 1205.35272 · doi:10.1016/j.amc.2010.09.003
[6] Kudryashov, N. A.: One method for finding exact solutions of nonlinear differential equations, Commun nonlinear sci numer simulat 17, 2248-2253 (2012) · Zbl 1250.35055
[7] Ryabov, P. N.; Sinelshchikov, D. I.; Kochanov, M. B.: Application of the kudryashov method for finding exact solutions of the high order nonlinear evolution equations, Appl math comput 218, 3965-3972 (2011) · Zbl 1246.35015
[8] Li, J.; Dai, H.: On the study of singular nonlinear traveling wave equation: dynamical system approach, (2007)
[9] Li, J.; Zhang, Y.; Chen, G.: Exact solutions and their dynamics of traveling waves in three typical nonlinear wave equations, Int J bifur chaos 7, 2249-2266 (2009) · Zbl 1176.34004 · doi:10.1142/S0218127409024049
[10] He, B.; Li, J.; Long, Y.; Rui, W.: Bifurcations of travelling wave solutions for a variant of Camassa -- Holm equation, Nonlinear anal RWA 9, 222-232 (2008) · Zbl 1185.35217 · doi:10.1016/j.nonrwa.2006.10.001
[11] Li, J.; Liu, Z.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Appl math model 25, 41-56 (2000) · Zbl 0985.37072 · doi:10.1016/S0307-904X(00)00031-7
[12] Byrd, P. F.; Friedman, M. D.: Handbook of elliptic integrals for engineers and physicists, (1971) · Zbl 0213.16602