zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact travelling wave solutions of the Schamel-Korteweg-de Vries equation. (English) Zbl 1248.35188
Summary: The Schamel-Korteweg-de Vries (S-KdV) equation containing a square root nonlinearity is a very attractive model for the study of ion-acoustic waves in plasma and dusty plasma. We obtain exact travelling wave solutions of the S-KdV equation by employing the exp function method. The work emphasizes the power of the method in providing distinct solutions of different physical problems.

35Q53KdV-like (Korteweg-de Vries) equations
35C07Traveling wave solutions of PDE
35C05Solutions of PDE in closed form
Full Text: DOI
[1] Abbasbandy, S.; Shirzadi, A.: The first integral method for modified benjamin -- bona -- Mahony equation. Commun. nonlin. Science numerical simulation 15, No. 7, 1759-1764 (2010) · Zbl 1222.35166
[2] Dehghan, M.; Shakeri, F.: Use of he’s homotopy perturbation method for solving a partial differential equation arising in modeling of flow in porous media. J. porous media 11, 765-778 (2008)
[3] Dehghan, M.; Manafian, J.: The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method. Z. naturforschung A 64a, 411-419 (2009)
[4] Das, G. C.; Tagare, S. G.; Sarma, J.: Quasi-potential analysis for ion-acoustic solitary wave and double layers in plasmas. Planet. space sci. 46, 417 (1998)
[5] He, J. H.; Wu, X. H.: Exp-function method for nonlinear wave equations. Chaos, solitons fractals 30, 700-708 (2006) · Zbl 1141.35448
[6] He, J. H.: Variational iteration method --- a kind of non-linear analytical technique: some examples. Int. J. Non-linear mech. 34, 699-708 (1999) · Zbl 05137891
[7] Mokhtari, R.: Variational iteration method for solving nonlinear differential-difference equations. Int. J. Nonlinear sci. Numer. simul. 9, 19-24 (2008)
[8] Sakthivel, R.; Chun, C.: New soliton solutions of chaffee-infante equations. Z. naturforsch. A (J. Phys. sci.) 65a, 197-202 (2010)
[9] Sakthivel, R.; Chun, C.; Lee, J.: New travelling wave solutions of Burgers equation with finite transport memory. Z. naturforsch. A (J. Phys. sci.) 65, 633-640 (2010)
[10] Chun, C.; Sakthivel, R.: Homotopy perturbation technique for solving two-point boundary value problems- comparison with other methods. Computer phys. Commun. 181, 1021-1024 (2010) · Zbl 1216.65094
[11] Chun, C.; Sakthivel, R.: New soliton and periodic solutions for two nonlinear physical models. Z. naturforsch. A (J. Phys. sci.) 65a, 1049-1054 (2010)
[12] Lee, J.; Sakthivel, R.: Exact traveling wave solutions of a higher-dimensional nonlinear evolution equation. Mod. phys. Lett. B 24, 1011-1021 (2010) · Zbl 1188.37063
[13] Tagare, S. G.; Chakraborty, A. N.: Solution of a generalised Korteweg -- devries equation. Phys. fluids 17, 1331 (1974)
[14] Schamel, H.: A modified Korteweg -- de Vries equation for ion acoustic waves due to resonant electrons. Plasma phys. 9, 377 (1973)
[15] Yusufoglu, E.; Bekir, A.: The tanh and the sine-cosine methods for exact solutions of the MBBM and the Vakhnenko equations. Chaos, solitons and fractals 38, 1126-1133 (2008) · Zbl 1152.35485
[16] Zhang, S.; Zhang, H.: Exp-function method for N-soliton solutions of nonlinear evolution equations in mathematical physics. Phys. lett. A 373, 2501-2505 (2009) · Zbl 1231.35220
[17] Zhang, S.; Zhang, H.: Variable-coefficient discrete tanh method and its application to (2 + 1)-dimensional Toda equation. Phys. lett. A 373, 905-2910 (2009) · Zbl 1233.37046
[18] Zhang, S.: Exp-function method: solitary, periodic and rational wave solutions of nonlinear evolution equations. Nonlinear sci. Lett. A 1, 143-146 (2010)
[19] Zhang, S.; Zong, Q. A.; Liu, D.; Gao, Q.: A generalized exp-function method for fractional Riccati differential equations. Commun. fractal calculus 1, 48-51 (2010)
[20] Yildirim, A.; Agirseven, D.: The homotopy perturbation method for solving singular initial value problems. Int. J. Nonlinear sci. Numer. simul. 10, 235-238 (2009)
[21] Hosseini, H.; Kabir, M. M.; Khajeh, A.: New explicit solutions for the Vakhnenko and a generalized form of the nonlinear heat conduction equations via exp-function method. Int. J. Nonlinear sci. Numer. simul. 10, 1307-1318 (2009)
[22] Mohyud-Din, S. T.; Noor, M. A.; Noor, K. I.: Variational iteration method for re-formulated partial differential equations. Internat. J. Nonlinear sci. Numer. 11, 87-92 (2010) · Zbl 1201.35015