zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the behavior of a system of rational difference equations $x_{n+1} = x_{n-1}/(y_nx_{n-1} - 1), y_{n+1} = y_{n-1}/(x_ny_{n-1} - 1), z_{n+1} = 1/x_nz_{n-1}$. (English) Zbl 1248.39013
Summary: We are concerned with a three-dimensional system of rational difference equations with nonzero initial values. We present solutions of the system in an explicit way and obtain the asymptotical behavior of solutions.

MSC:
39A22Growth, boundedness, comparison of solutions (difference equations)
WorldCat.org
Full Text: DOI
References:
[1] Y. Gu and R. Ding, “Observable state space realizations for multivariable systems,” Computers and Mathematics with Applications, vol. 63, no. 9, pp. 1389-1399, 2012. · Zbl 1247.93003
[2] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002. · Zbl 1062.39008
[3] K. Liu, P. Cheng, P. Li, and W. Zhong, “On a system of rational difference equations xn+1=xn-1/(ynxn - 1 - 1),yn+1=yn - 1/(xnyn-1-1),zn+1=1/ynzn - 1,” Fasciculi Mathematici. In press.
[4] C. \cCinar, “On the positive solutions of the difference equation xn+1=xn-1/(1+bxnxn - 1),” Applied Mathematics and Computation, vol. 150, no. 1, pp. 21-24, 2004. · Zbl 1208.39031 · doi:10.1016/S0096-3003(03)00194-2
[5] C. \cCinar, “On the positive solutions of the difference equation xn+1=axn-1/(1+bxnxn - 1),” Applied Mathematics and Computation, vol. 156, no. 2, pp. 587-590, 2004. · Zbl 1208.39031 · doi:10.1016/j.amc.2003.08.010
[6] C. \cCinar, “On the positive solutions of the difference equation system xn+1=1/yn,yn+1=yn/xn - 1yn - 1,” Applied Mathematics and Computation, vol. 158, no. 2, pp. 303-305, 2004. · Zbl 1208.39031 · doi:10.1016/j.amc.2003.08.073
[7] S. Stević, “On a system of difference equations xn+1=axn-1/(bynxn - 1+c),yn+1=\alpha yn - 1/(\beta xnyn-1+\gamma ),” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3372-3378, 2011. · Zbl 1242.39017 · doi:10.1016/j.amc.2011.08.079
[8] A. S. Kurbanli, C. \cCinar, and I. Yal\ccinkaya, “On the behavior of solutions of the system of rational difference equations xn+1=xn-1/(ynxn - 1 - 1),yn+1=yn - 1/(xnyn-1-1),” World Applied Sciences Journal, vol. 10, no. 11, pp. 1344-1350, 2010.
[9] A. S. Kurbanli, “On the behavior of solutions of the system of rational difference equations xn+1=xn-1/(ynxn - 1 - 1),yn+1=yn - 1/(xnyn-1-1),zn+1=zn-1/(ynzn-1-1),” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 932632, 12 pages, 2011. · Zbl 1217.39015 · doi:10.1155/2011/932362
[10] A. S. Kurbanli, “On the behavior of solutions of the system of rational difference equations xn+1=xn-1/(ynxn - 1 - 1),yn+1=yn - 1/(xnyn-1-1),zn+1=1/ynzn,” Advances in Difference Equations, vol. 40, 2011.
[11] A. S. Kurbanli, C. \cCinar, and M. E. Erdo\ugan, “On the behavior of solutions of the system of rational difference equations of rational difference equations xn+1=xn-1/(ynxn - 1 - 1),yn+1=yn - 1/(xnyn-1-1),zn+1=xn/ynzn-1,” Applied Methematics, vol. 2, pp. 1031-1038, 2011.
[12] K. Liu, Z. Zhao, X. Li, and P. Li, “More on three-dimensional systems of rational difference equations,” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 178483, 9 pages, 2011. · Zbl 06014493 · doi:10.1155/2011/178483