Abu-Sirhan, Eyad Best simultaneous approximation in function and operator spaces. (English) Zbl 1248.41029 Turk. J. Math. 36, No. 1, 101-112 (2012). Summary: Let \(Z\) be a Banach space and \(G\) be a closed subspace of \(Z\). For \(f_1,f_2\in Z\), the distance from \(f_1\), \(f_2\) to \(G\) is defined by \(d(f_1,f_2,G)= \text{inf}_{f\in G}\max\{\| f_1- f\|,\,\|_2- f\|\}\). An element \(g^*\in G\) satisfying \[ \max\{\| f_1- g^*\|,\,\| f_2- g^*\|\}= \underset{f\in G}{}{\text{inf}}\, \max\{\| f_1- f\|,\, \| f_2- f\|\} \] is called a best simultaneous approximation for \(f_1\), \(f_2\) from \(G\). In this paper, we study the problem of best simultananeous approximation in the space of all continuous \(X\)-valued functions on a compact Hausdorff space \(S\); \(C(S,X)\), and the space of all bounded linear operators from a Banach space \(X\) into a Banach space \(Y\); \(L(X,Y)\). Cited in 6 Documents MSC: 41A28 Simultaneous approximation Keywords:simultaneous approximation; Banach spaces PDF BibTeX XML Cite \textit{E. Abu-Sirhan}, Turk. J. Math. 36, No. 1, 101--112 (2012; Zbl 1248.41029)