zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A review of power laws in real life phenomena. (English) Zbl 1248.60020
Summary: Power law distributions, also known as heavy tail distributions, model distinct real life phenomena in the areas of biology, demography, computer science, economics, information theory, language, and astronomy, amongst others. In this paper, it is presented a review of the literature having in mind applications and possible explanations for the use of power laws in real phenomena. We also unravel some controversies around power laws.

60E05General theory of probability distributions
Full Text: DOI
[1] Adamic, L. A.; Huberman, B. A.: The nature of markets in the world wide web, Q J electron comm 1, 512 (2000)
[2] Adamic, L. A.; Huberman, B. A.: Zipfs law and the Internet, Glottometrics 3, 143-150 (2002)
[3] Aiello W, Chung F, Lu L. A random graph model for massive graphs. In: Proceedings of the 32nd annual ACM symposium on theory of computing, 2000. p. 171 -- 80. · Zbl 1296.05172
[4] Anazawa, M.; Ishikawa, A.; Suzuki, T.; Tomoyose, M.: Physica A, Physica A 335, 616 (2004)
[5] Anderson C. A methodology for estimating Amazon’s long tail sales. <http://longtail.typepad.com/the long tail/2005/08/a methodology f.html>; August 2005.
[6] Anderson, G.; Ge, Y.: The size distribution of chinese cities, Reg sci urban econ 35, 756-776 (2005)
[7] Andersson, C.; Hellervik, A.; Lindgren, K.: A spatial network explanation for a hierarchy of urban power laws, Physica A 345, 227-244 (2005)
[8] Ayoama, H.; Fujiwara, Y.; Souma, W.: Kinematics and dynamics of Pareto -- Zipf’s law and gibrat’s law, Physica A 344, 117-121 (2004)
[9] Auerbach, F.: Das gesetz der belvolkerungskoncentration, Petermann geogr mitt 59, 74-76 (1913)
[10] Bak, P.; Chen, K.; Tang, C.: A forest-fire model and some thoughts on turbulence, Phys lett A 147, No. 5 -- 6, 297-300 (1990)
[11] Barford, P.; Bestavros, A.; Bradley, A.; Crovella, M.: Changes in web client access patterns: characteristics and caching implications, World wide web 2, 15-28 (1999)
[12] Batty, M.: Cities and complexity: understanding cities through cellular automata, agent-based models, and fractals, (2005)
[13] Benguigui, L.; Blumenfeld-Lieberthal, E.: The temporal evolution of the city size distribution, Physica A 388, No. 7, 1187-1195 (2009)
[14] Bi Z, Faloutsos C, Korn F, The DGX distribution for mining massive, skewed data. In: Proceedings of the seventh ACMSIGKDD international conference on knowledge discovery and data mining, San Francisco, California, 2001.
[15] Blank, A.; Solomon, S.: Power laws in cities population, financial markets and Internet sites (scaling in systems with a variable number of components), Physica A 287, 279-288 (2000)
[16] Bohorquez, J. C.; Gourley, S.; Dixon, A. R.; Spagat, M.; Johnson, N. F.: Common ecology quantifies human insurgency, Nature 462, No. 7275, 911-914 (2009)
[17] Bosker, M.; Brakman, S.; Garretsen, H.; Schramm, M.: A century of shocks: the evolution of the German city size distribution 1925 -- 1999, Reg sci urban econ 38, No. 4, 330-347 (2008)
[18] Brakman, S.; Garretsen, H.; Van Marrewikj, C.; Van De Berg, M.: The return of Zipf: towards a further understanding of the rank-size distribution, J reg sci 39, No. 1, 182-213 (1999)
[19] Brynjolfsson E, Hu YJ, Smith MD. Consumer surplus in the digital economy: estimating the value of increased product variety at online booksellers. MIT sloan working paper No. 4305-03. Available at: SSRN: <http://ssrn.com/abstract=400940> or doi:10.2139/ssrn.400940; June 2003.
[20] Caron, Y.; Makris, P.; Vincent, N.: Use of power law models in detecting region of interest, Pattern recognit 40, 2521-2529 (2007) · Zbl 1118.68488 · doi:10.1016/j.patcog.2007.01.004
[21] Carson, M.; Langer, J. S.: Mechanical model of an earthquake fault, Phys rev A 40, 6470-6484 (1989)
[22] Cederman, L. E.: Modeling the size of wars: from billiard balls to sandpiles, Am polit sci rev 97, 135-150 (2003)
[23] Champernowne, D. G.: A model of income distribution, Econ J 63, 318-351 (1953)
[24] Chatterjee, A.; Chakrabarti, B. K.; Manna, S. S.: Pareto law in a kinetic model of market with random saving propensity, Physica A 335, 155-163 (2004)
[25] Chebotarev, A. M.: On stable Pareto laws in a hierarchical model of economy, Physica A 373, 541-559 (2007)
[26] Chevalier, J.; Goolsbee, A.: Measuring prices and price competition online: amazon.com and barnesandnoble.com, Quant mark econ 1, 203-222 (2003)
[27] Clauset A, Young M. Scale invariance in Global Terrorism. e-print physics/0502014 at <http://xxx.lanl.gov>.
[28] Clauset, A.; Young, M.; Gleditsch, K. S.: On the frequency of severe terrorist events, J conflict resolut 51, No. 1, 58-87 (2007)
[29] Cooper C, Frieze A. On a general model of undirected Web graphs. In: Proceedings of the 9th annual European symposium on algorithms, 2001. p. 500 -- 11. · Zbl 1006.68541
[30] Cox, R. A. K.; Felton, J. M.; Chung, K. C.: The concentration of commercial success in popular music: an analysis of the distribution of gold records, J cult econ 19, 333-340 (1995)
[31] Crawley, M. J.; Harral, J. E.: Scale dependence in plant biodiversity, Science 291, 864-868 (2001)
[32] Crovella, M. E.; Bestavros, A.: Self-similarity in world wide web traffic: evidence and possible causes, Proceedings of the 1996 ACM SIGMETRICS conference on measurement and modeling of computer systems, 148-159 (1996)
[33] Crovella, M.; Taqqu, M. S.; Bestavros, A.: Heavy-tailed probability distributions in the world wide web, A pratical guide to heavy tails, 3-26 (1998) · Zbl 0945.62130
[34] Crow, E. L.; Shimizu, K.: Lognormal distributions: theory and application, (1988) · Zbl 0644.62014
[35] Dahui, W.; Menghui, L.; Zengru, D.: True reason for Zipf’s law in language, Physica A 358, 545-550 (2005)
[36] Das, A.; Yarlagadda, S.: An analytical treatment of the Gibbs -- Pareto behavior in wealth distribution, Physica A 353, 529-538 (2005)
[37] Davis, D. R.; Weinstein, D. E.: Bones, bombs, and break points: the geography of economic activity, Am econ rev 92, No. 5, 1269-1289 (2002)
[38] Dobkins, L.; Ioannides, Y.: Dynamic evolution of the US citysize distribution, The economics of cities (1998)
[39] Dorogovtsev, S. N.; Mendes, J. F. F.; Oliveira, J. G.: Frequency of occurrence of numbers in the world wide web, Physica A 360, 548-552 (2006)
[40] Dragulescu, A. A.; Yakovenko, V. M.: Statistical mechanics of money, income, and wealth: a short survey, Eur phys J B 20, 585-589 (2001)
[41] Drossel, B.; Schwbal, F.: Self-organized critical forest-fire model, Phys rev lett 69, No. 11, 1629-1632 (1992)
[42] Estoup, J. B.: Gammes stenographiques, (1916)
[43] Fahidy, T. Z.: Applying Pareto distribution theory to electrolytic powder production, Electrochem commun (2011)
[44] Fenner, T.; Levene, M.; Loizou, G.: Predicting the long tail of book sales: unearthing the power-law exponent, Physica A 389, No. 12, 2416-2421 (2010)
[45] Figueira, F. C.; Moura, N. J.; Ribeiro, M. B.: The Gompertz -- Pareto income distribution, Physica A 390, 689-698 (2011)
[46] Fujiwaraa, Y.; Aoyamac, H.; Guilmib, C. D.; Souma, W.; Gallegati, M.: Gibrat and paretozipf revisited with European firms, Physica A 344, 112-116 (2004)
[47] Gabaix X. Zipf’s law and the growth of cities. In: American economic review papers and proceedings, vol. LXXXIX, 1999. p. 129 -- 32. · Zbl 0952.91059
[48] Gabaix, X.: Zipf’s law for cities: an explanation, Q J econ 114, 739-767 (1999) · Zbl 0952.91059 · doi:10.1162/003355399556133
[49] Gan, L.; Li, Dong; Song, S.: Is the Zipf law spurious in explaining city-size distributions?, Econ lett 92, 256-262 (2006)
[50] Gibrat, R.: LES inégalités économiques, (1931) · Zbl 57.0635.06
[51] Giesen, K.; Zimmermann, A.; Suedekum, J.: The size distribution across all cities double Pareto lognormal strikes, J urban econ 68, 129-137 (2010)
[52] Gopikrishnan, P.; Plerou, V.; Liu, Y.; Amaral, L. A. N.; Gabaix, X.; Stanley, H. E.: Scaling and correlation in financial time series, Physica A 287, No. 3 -- 4, 362-373 (2000)
[53] Gutenberg, B.; Richter, R. F.: Frequency of earthquakes in California, Bull seismol soc am 34, 185-188 (1944)
[54] Huberman, B. A.; Adamic, L. A.: Growth dynamics of the world-wide web, Nature 401, 131 (1999)
[55] Iba T, Yoshida M, Fukami Y, Saitoh M, Power-law distribution in Japanese book sales market, in: Fourth joint Japan -- North America mathematical sociology conference, 2008.
[56] Ijiri, Y.; Simon, H. A.: Skew distributions and the sizes of business firms, (1977) · Zbl 0392.90003
[57] Ishikawa, A.: Pareto law and Pareto index in the income distribution of Japanese companies, Physica A 349, 597-608 (2005)
[58] Ishikawa, A.: Annual change of Pareto index dynamically deduced from the law of detailed quasi-balance, Physica A 336, 367-376 (2006)
[59] Israeloff, N. E.; Kagalenko, M.; Chan, K.: Can Zipf distinguish language from noise in noncoding DNA, Phys rev lett 76, 1976-1979 (1995)
[60] Johnson NF, Spagat M, Restrepo JA, Becerra O, Bohorquez JC, Suarez N, Restrepo EM, Zarama R. Universal patterns underlying ongoing wars and terrorism. <arXiv:physics/0605035v1>; 2006.
[61] Krapivsky, P. L.; Redner, S.: Organization of growing random networks, Phys rev E 63, 066123 (2001)
[62] Krugman, P.: The self-organizing economy, (1996)
[63] Lévy, M.; Solomon, S.: New evidence for the power-law distribution of wealth, Physica A 242, 90 (1997)
[64] Li W. References on Zipf’s law. <http://www.nslij-genetics.org/wli/zipf/>.
[65] Lin, W.; Yang, Y.: Zipf’s law in importance of genes for cancer classification using microarray data, J theor biol 219, 539-551 (2002)
[66] Lotka, A. J.: The frequency distribution of scientific productivity, J Washington acad sci 16, 317-324 (1926)
[67] Lu, E. T.; Hamilton, R. J.: Avalanches of the distribution of solar flares, Astrophys J 380, 89-92 (1991)
[68] Malamud, B. D.; Morein, G.; Turcotte, D. L.: Forest fires: an example of self-organized critical behavior, Science 281, No. 5384, 1840-1842 (1998)
[69] Mandelbrot, B.: The Pareto -- Lévy law and the distribution of income, Int econ rev I, 79-106 (1960) · Zbl 0201.51101 · doi:10.2307/2525289
[70] Mantegna, R. N.; Stanley, H. E.: The scaling behavior of an economic index, Nature 376, 46-49 (1995)
[71] Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions, Int math 1, 226-251 (2004) · Zbl 1063.68526 · doi:10.1080/15427951.2004.10129088
[72] Mizunoa, T.; Toriyama, M.; Terano, T.; Takayasu, M.: Pareto law of the expenditure of a person in convenience stores, Physica A 387, 3931-3935 (2008)
[73] Jr., N. J. Moura; Ribeiro, M. B.: Zipf law for Brazilian cities, Physica A 367, 441-448 (2006)
[74] Neukum, G.; Ivanov, B. A.: Crater size distributions and impact probabilities on Earth from lunar, terrestial-planet, and asteroid cratering data, Hazards due to comets and asteroids, 359-416 (1994)
[75] Newman, M. E. J.: Power laws, Pareto distributions and Zipf’s law, Contem phys 46, 323-351 (2005)
[76] Nitsch, V.: Zipf zipped, J urban econ 57, 123-146 (2005)
[77] Okuyama, K.; Takayasu, M.; Takayasu, H.: Zipfs law in income distribution of companies, Physica A 269, 125-131 (1999)
[78] Overman HG, Ioannides Y. Zipf law for cities: an empirical examination. London: Centre for Economic Performance, London School of Economics and Political Science; 2000.
[79] Pareto, V.: Cours d’economie politique, (1896)
[80] Parr, J.: Note on the size distribution of cities over time, J urban econ 18, 199-212 (1985)
[81] Pinho, S. T. R.; Andrade, R. F. S.: An abelian model for rainfall, Physica A 255, 483-495 (1998)
[82] De S. Price, D. J.: Networks of scientific papers, Science 149, 510-515 (1965)
[83] Redner, S.: How popular is your paper? an empirical study of the citation distribution, Eur phys J B 4, 131-134 (1998)
[84] Reed, W. J.: The Pareto law ofincomes -- an explanation and an extension, Physica A 319, 469-486 (2003) · Zbl 1008.91090 · doi:10.1016/S0378-4371(02)01507-8
[85] Richardson, L. F.: Variation of the frequency of fatal quarrels with magnitude, J am stat assoc 43, 523-546 (1948)
[86] Richardson, L. F.: Statistics of deadly quarrels, (1960)
[87] Ricotta, C.; Avena, G.; Marchetti, M.: The flaming sandpile: self-organized criticality and wildfires, Ecol model 119, No. 1, 73-77 (1999)
[88] Roberts, D. C.; Turcotte, D. L.: Fractality and selforganized criticality of wars, Fractals 6, 351-357 (1998)
[89] Rosen, K.; Resnick, M.: The size distribution of cities: an examination of the Pareto law and primacy, J urban econ 8, 165-186 (1980)
[90] Rozenfeld, H. D.; Rybski, D.; Jr., J. S. Andrade; Batty, M.; Stanley, H. E.; Makse, H. A.: Laws of population growth, Proc natl acad sci USA 105, 18702-18707 (2008)
[91] Rozman, G.: East asian urbanization in the nineteenth century, Urbanization in history: a process of dynamic interactions, 61-73 (1990)
[92] Sarabia, J. M.; Prieto, F.: The Pareto-positive stable distribution: a new descriptive model for city size data, Physica A 388, 4179-4191 (2009)
[93] Satoh K, Weiguo S, Yang KT. A study of forest fire danger prediction system in Japan. In: 15th international workshop on database and expert systems applications (DEXA’04), 2004. p. 598 -- 602.
[94] Schuster, P.; Fontana, W.; Stadler, P. F.; Hofacker, I. L.: From sequences to shapes and back: a case study in RNA secondaru structures, Proc R soc lond B 255, 279-284 (1994)
[95] Seuront, L.; Mitchell, J. G.: Towards a seascape typology. I. Zipf versus Pareto laws, J marine syst 69, 310-327 (2008)
[96] Simon, H. A.: On a class of skew distribution functions, Biometrika 42, 425-440 (1955) · Zbl 0066.11201
[97] Song, W. G.; Fan, W.; Wang, B.: Self-organized criticality of forest fires in China, Chin sci bull 46, No. 13, 1134-1137 (2001)
[98] Song, W. G.; Zhang, H. P.; Chen, T.; Fan, W. C.: Power-law distribution of city fires, Fire safety J 38, 453-465 (2003)
[99] Soo, K. T.: Zipfs law for cities: a cross-country investigation, Reg sci urban econ 35, No. 3, 239-263 (2005)
[100] Sornette, D.: Critical phenomena in natural sciences, (2003) · Zbl 1126.91001
[101] Stroud, P. D.; Sydoriak, S. J.; Riese, J. M.; Smith, J. P.; Mniszewski, S. M.; Romero, P. R.: Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing, Math biosci 203, 301-318 (2006) · Zbl 1101.92045 · doi:10.1016/j.mbs.2006.01.007
[102] Tsallis, C.: Possible generalization of Boltzmann -- Gibbs statistics, J stat phys 52, 479-487 (1988) · Zbl 1082.82501 · doi:10.1007/BF01016429
[103] Urzúa, C. M.: A simple and efficient test for Zipf’s law, Econ lett 66, 257-260 (2000) · Zbl 0951.91059 · doi:10.1016/S0165-1765(99)00215-3
[104] Warren D. Examining city size distributions using urban areas. In: 45th Annual meeting of the western regional science association, Santa Fe, New Mexico, 2006.
[105] Weiguoa, S.; Jiana, W.; Kohyub, S.; Weicheng, F.: Three types of power-law distribution of forest fires in Japan, Ecol model 196, 527-532 (2006)
[106] Wichmann, S.: On the power-law distributon of language family sizes, J linguist 41, 117-131 (2005)
[107] Willis, J. C.; Yule, G. U.: Some statistics of evolution and geographical distribution in plants and animals, and their significance, Nature 109, 177-179 (1922)
[108] Zanette, D. H.; Manrubia, S. C.: Role of intermittency in urban development: a model of large-scale city formation, Phys rev lett, 523-526 (1997)
[109] Zanette, D. H.; Manrubia, S. C.: Vertical transmission of culture and the distribution of family names, Physica A 295, 1-8 (2001) · Zbl 0984.92516 · doi:10.1016/S0378-4371(01)00046-2
[110] Zipf, G.: Selective studies and the principle of relative frequency in language, (1932)
[111] Zipf, G.: Human behavior and the priciple of least effort, (1949)