zbMATH — the first resource for mathematics

Approximating a geometric fractional Brownian motion and related processes via discrete Wick calculus. (English) Zbl 1248.60044
Summary: We approximate the solution of some linear systems of SDEs driven by a fractional Brownian motion \(B^{H}\) with Hurst parameter \(H\in (\frac{1}{2} , 1)\) in the Wick-Itô sense, including a geometric fractional Brownian motion. To this end, we apply a Donsker-type approximation of the fractional Brownian motion by disturbed binary random walks due to Sottinen. Moreover, we replace the rather complicated Wick products by their discrete counterpart, acting on binary variables, in the corresponding systems of Wick difference equations. As the solutions of the SDEs admit series representations in terms of Wick powers, a key to the proof of our Euler scheme is an approximation of the Hermite recursion formula for the Wick powers of \(B^{H}\).

60G22 Fractional processes, including fractional Brownian motion
60B10 Convergence of probability measures
60H07 Stochastic calculus of variations and the Malliavin calculus
60H40 White noise theory
Full Text: DOI arXiv Euclid
[1] Alòs, E., Mazet, O. and Nualart, D. (2001). Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 766-801. · Zbl 1015.60047
[2] Bender, C. (2003). An S -transform approach to integration with respect to a fractional Brownian motion. Bernoulli 6 955-983. · Zbl 1047.60049
[3] Bender, C. and Elliott, R.J. (2004). Arbitrage in a discrete version of the Wick-fractional Black-Scholes market. Math. Oper. Res. 29 935-945. · Zbl 1082.91045
[4] Biagini, F., Hu, Y., Øksendal, B. and Zhang, T. (2008). Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and Its Applications . London: Springer. · Zbl 1157.60002
[5] Billingsley, P. (1968). Convergence of Probability Measures . New York: Wiley. · Zbl 0172.21201
[6] Duncan, T.E., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian motion. I: Theory. SIAM J. Control Optim. 38 582-612. · Zbl 0947.60061
[7] Elliott, R.J. and van der Hoek, J. (2003). A general fractional white noise theory and applications to finance. Math. Finance 13 301-330. · Zbl 1069.91047
[8] Gaigalas, R. and Kaj, I. (2003). Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9 671-703. · Zbl 1043.60077
[9] Gzyl, H. (2006). An exposé on discrete Wiener chaos expansions. Bol. Asoc. Mat. Venez. 13 3-27. · Zbl 1183.60020
[10] Holden, H., Lindstrøm, T., Øksendal, B. and Ubøe, J. (1992). Discrete Wick calculus and stochastic functional equations. Potential Anal. 1 291-306. · Zbl 0776.60067
[11] Holden H., Øksendal, B., Ubøe, J. and Zhang, T. (1996). Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach. Probability and Its Applications . Basel: Birkhäuser. · Zbl 0860.60045
[12] Hu, Y. and Øksendal, B. (2003). Fractional white noise calculus and applications to finance. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 1-32. · Zbl 1045.60072
[13] Hu, Y. and Yan, J.A. (2009). Wick calculus for nonlinear Gaussian functionals. Acta Math. Appl. Sin. Engl. Ser. 25 399-414. · Zbl 1186.60034
[14] Kuo, H.-H. (1996). White Noise Distribution Theory. Probability and Stochastics Series . Boca Raton, FL: CRC Press. · Zbl 0853.60001
[15] Mishura, Y. (2008). Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Math. 1929 . Berlin: Springer. · Zbl 1138.60006
[16] Molchan, G. (1969). Gaussian processes with spectra which are asymptotically equivalent to a power of \lambda . Theory Probab. Appl. 14 530-532.
[17] Molchan, G. and Golosov, J. (1969). Gaussian stationary processes with asymptotic power spectrum. Soviet. Math. Dokl. 10 134-137. · Zbl 0181.20704
[18] Norros, I., Valkeila, E. and Virtamo, J. (1999). An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 571-587. · Zbl 0955.60034
[19] Nieminen, A. (2004). Fractional Brownian motion and martingale-differences. Statist. Probab. Lett. 70 1-10. · Zbl 1121.60036
[20] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Probability and Its Applications . Berlin: Springer. · Zbl 1099.60003
[21] Sottinen, T. (2001). Fractional Brownian motion, random walks and binary market models. Finance Stoch. 5 343-355. · Zbl 0978.91037
[22] Taqqu, M.S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287-302. · Zbl 0303.60033
[23] Valkeila, E. (2010). On the approximation of geometric fractional Brownian motion. In Optimality and Risk-Modern Trends in Mathematical Finance . Springer. · Zbl 1181.60048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.