zbMATH — the first resource for mathematics

On calculation of stationary density of autoregressive processes. (English) Zbl 1248.62141
Summary: An iterative procedure for computation of stationary densities of autoregressive processes is proposed. With an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
65C60 Computational problems in statistics (MSC2010)
Full Text: Link EuDML
[1] Anděl J.: Dependent random variables with a given marginal distribution. Acta Univ. Carolin. - Math. Phys. 24 (1983), 3-11
[2] Anděl J.: Marginal distributions of autoregressive processes. Trans. 9th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1983, pp. 127-135
[3] Anděl J.: On linear processes with given moments. J. Time Ser. Anal. 8 (1987), 373-378 · Zbl 0633.60056 · doi:10.1111/j.1467-9892.1987.tb00001.x
[4] Anděl J.: AR(1) processes with given moments of marginal distribution. Kybernetika 22 (1989), 337-347 · Zbl 0701.62087 · www.kybernetika.cz · eudml:27486
[5] Anděl J., Bartoň T.: A note on the threshold AR(1) model with Cauchy innovations. J. Time Ser. Anal. 7 (1986), 1-5 · Zbl 0587.60033 · doi:10.1111/j.1467-9892.1986.tb00481.x
[6] Anděl J., Garrido M.: On stationary distributions of some time series models. Trans. 10th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1988, pp. 193-202
[7] Anděl J., Gómez M., Vega C.: Stationary distribution of some nonlinear AR(1) processes. Kybernetika 25 (1989), 453-460 · Zbl 0701.60029 · www.kybernetika.cz
[8] Anděl J., Netuka I., Zvára K.: On threshold autoregressive processes. Kybernetika 20 (1984), 89-106 · Zbl 0547.62058 · eudml:27648
[9] Bernier J.: Inventaire des modèles et processus stochastique applicables de la description des déluts journaliers des riviers. Rev. Inst. Internat. Statist. 38 (1970), 50-71 · doi:10.2307/1402324
[10] Davis R. A., Rosenblatt M.: Parameter estimation for some time series models without contiguity. Statist. Probab. Lett. 11 (1991), 515-521 · Zbl 0725.62079 · doi:10.1016/0167-7152(91)90117-A
[11] Feller W.: An Introduction to Probability Theory and its Applications II. Wiley, New York 1966 · Zbl 0138.10207
[12] Gaver D. P., Lewis P. A. W.: First-order autoregressive gamma sequences and point processes. Adv. in Appl. Probab. 12 (1980), 727-745 · Zbl 0453.60048 · doi:10.2307/1426429
[13] Haiman G.: Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes. Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, North-Holland/Elsevier, Amsterdam 1998, pp. 723-730 · Zbl 0926.62080
[14] Hamilton J. D.: Time Series Analysis. Princeton University Press, Princeton 1994 · Zbl 0831.62061
[15] Loève M.: Probability Theory. Second edition. Van Nostrand, Princeton 1955 · Zbl 0385.60001
[16] Rényi A.: Probability Theory. Akadémiai Kiadó, Budapest 1970 · Zbl 0206.18002
[17] Sondhi M. M.: Random processes with specified spectral density and first-order probability density. Bell System Technical J. 62 (1983), 679-701 · doi:10.1002/j.1538-7305.1983.tb04411.x
[18] Štěpán J.: Teorie pravděpodobnosti. Academia, Praha 1987
[19] Tong H.: Non-linear Time Series. Clarendon Press, Oxford 1990 · Zbl 0835.62076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.