×

On the convergence of the ensemble Kalman filter. (English) Zbl 1248.62164

One of the most successful recent data assimilation methods for high-dimensional problems is the ensemble Kalman filter. The present analysis does not assume that the ensemble members are independent or normally distributed. A discrete-time filtering problem is introduced. It is based on the Bayes theorem. The main theorem establishes the convergence of the ensemble Kalman filter in the Lebesgue space \(L^p\) for all \(p\in [1,\infty)\). As a consequence the authors derive that the ensemble mean and covariance converge to the filtering mean and covariance.

MSC:

62M20 Inference from stochastic processes and prediction
60G09 Exchangeability for stochastic processes

Software:

EnKF
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML Link

References:

[1] B.D.O. Anderson, J.B. Moore: Optimal Filtering. Prentice-Hall, Englewood Cliffs, 1979.
[2] J. L. Anderson: An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review 129 (1999), 2884–2903. · doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
[3] J.D. Beezley: High-dimensional data assimilation and morphing ensemble Kalman filters with applications in wildfire modeling. PhD. Thesis. Department of Mathematical and Statistical Sciences, University of Colorado Denver, 2009, http://math.cudenver.edu/\(\sim\)jbeezley/jbeezley thesis.pdf .
[4] P. Billingsley: Probability and Measure, 3rd edition. John Wiley &amp; Sons Inc., New York, 1995. · Zbl 0822.60002
[5] G. Burgers, P. J. van Leeuwen, G. Evensen: Analysis scheme in the ensemble Kalman filter. Monthly Weather Review 126 (1998), 1719–1724. · doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
[6] M.D. Butala, R.A. Frazin, Y. Chen, F. Kamalabadi: Tomographic imaging of dynamic objects with the ensemble Kalman filter. IEEE Trans. Image Proces. 18 (2009), 1573–1587. · Zbl 1371.94067 · doi:10.1109/TIP.2009.2017996
[7] G. Evensen: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin, 2007. · Zbl 1157.86001
[8] R.A. Frazin, M.D. Butala, A. Kemball, F. Kamalabadi: Time-dependent reconstruction of nonstationary objects with tomographic or interferometric measurements. Astrophys. J. 635 (2005), L197–L200. · doi:10.1086/499431
[9] R. Furrer, T. Bengtsson: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal. 98 (2007), 227–255. · Zbl 1105.62091 · doi:10.1016/j.jmva.2006.08.003
[10] E. Kalnay: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge, 2003.
[11] F. Le Gland, V. Monbet, V.-D. Tran: Large Sample Asymptotics for the Ensemble Kalman Filter. Research Report RR-7014, INRIA, August 2009. http://hal.inria.fr/inria-00409060/en/ . · Zbl 1225.93108
[12] J. Li, D. Xiu: On numerical properties of the ensemble Kalman filter for data assimilation. Comput. Methods Appl. Mech. Eng. 197 (2008), 3574–3583. · Zbl 1195.93137 · doi:10.1016/j.cma.2008.03.022
[13] J. Mandel, J.D. Beezley: An ensemble Kalman-particle predictor-corrector filter for non-Gaussian data assimilation. ICCS 2009. Lecture Notes in Computer Science, Vol. 5545 (G. Allen, J. Nabrzyski, E. Seidel, G.D. van Albada, J. Dongarra, P.M.A. Sloot, eds.). Springer, 2009, pp. 470–478.
[14] J. Mandel, L. Cobb, J.D. Beezley: On the convergence of the ensemble Kalman filter. University of Colorado Denver CCM Report 278, January 2009. http://www.arXiv.org/abs/0901.2951 . · Zbl 1248.62164
[15] M.K. Tippett, J. L. Anderson, C.H. Bishop, T.M. Hamill, J. S. Whitaker: Ensemble square root filters. Monthly Weather Review 131 (2003), 1485–1490. · doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
[16] A.W. Van der Vaart: Asymptotic Statistics. Cambridge University Press, Cambridge, 2000.
[17] A. Vodacek, Y. Li, A. J. Garrett: Remote sensing data assimilation in environmental models. In: AIPR ’08: Proceedings of the 2008 37th IEEE Applied Imagery Pattern Recognition Workshop. IEEE Computer Society, Washington, 2008, pp. 1–5.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.