zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability. (English) Zbl 1248.68077
Summary: All the known models describing the propagation of virus codes were based on the assumption that a computer is uninfected at the time it is being connected to the Internet. In reality, however, it is much likely that infected computers are connected to the Internet. This paper is intended to investigate the propagation behavior of virus programs provided infected computers are connected to the Internet with positive probability. For that purpose, a new model characterizing the spread of computer virus is proposed. Theoretical analysis of this model indicates that (1) there is a unique (viral) equilibrium, and (2) this equilibrium is globally asymptotically stable. Further study shows that, by taking active measures, the percentage of infected computers can be made below an acceptable threshold value.

68M11Internet topics
90B18Communication networks (optimization)
68M10Network design and communication of computer systems
37N99Applications of dynamical systems
Full Text: DOI