Ge, Fangzhen; Wei, Zhen; Lu, Yang; Li, Lixiang; Yang, Yixian Disturbance chaotic ant swarm. (English) Zbl 1248.90077 Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, No. 9, 2597-2622 (2011). Summary: Chaotic ant swarm (CAS) is an optimization algorithm based on swarm intelligence theory, which has been applied to find the global optimum solution in search space. However, it often loses its effectiveness and advantages when applied to large and complex problems, e.g. those with high dimensions. To resolve the problems of high computational complexity and low solution accuracy existing in CAS, we propose a disturbance chaotic ant swarm (DCAS) algorithm to significantly improve the performance of the original algorithm. The aim of this paper is achieved by three strategies which include modifying the method of updating ant’s best position, neighbor selection method and establishing a self-adaptive disturbance strategy. The global convergence of the DCAS algorithm is proved in this paper. Extensive computational simulations and comparisons are carried out to validate the performance of the DCAS on two sets of benchmark functions with up to 1000 dimensions. The results show clearly that DCAS substantially enhances the performance of the CAS paradigm in terms of computational complexity, global optimality, solution accuracy and algorithm reliability for complex high-dimensional optimization problems. Cited in 2 Documents MSC: 90C59 Approximation methods and heuristics in mathematical programming Keywords:swarm intelligence; chaotic ant swarm; global search; function optimization PDF BibTeX XML Cite \textit{F. Ge} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, No. 9, 2597--2622 (2011; Zbl 1248.90077) Full Text: DOI References: [1] DOI: 10.1007/3-540-60469-3_22 [2] DOI: 10.1007/BF02459478 · Zbl 0859.92028 [3] DOI: 10.1016/j.epsr.2006.10.006 [4] DOI: 10.1016/j.ijepes.2010.01.006 [5] Chen W., IEEE Trans. Syst. Man Cyber. – Part C: Appl. Rev. 31 pp 29– [6] DOI: 10.1109/4235.985692 · Zbl 05451976 [7] DOI: 10.1098/rspb.1991.0079 [8] Colorni A., Belgian J. Operat. Res. Statist. Comput. Sci. 34 pp 39– [9] DOI: 10.1109/4235.585892 · Zbl 05451865 [10] DOI: 10.1162/106454699568728 [11] DOI: 10.1007/3-540-45724-0_18 · Zbl 05876668 [12] Echer J., Introduction to Operations Research (1988) [13] DOI: 10.1109/TMAG.2005.845998 [14] DOI: 10.1142/S0218127406016100 · Zbl 1192.90251 [15] DOI: 10.1016/j.chaos.2008.01.011 · Zbl 1198.90419 [16] DOI: 10.1016/j.chaos.2009.02.020 [17] DOI: 10.1109/TEVC.2005.857610 · Zbl 05452113 [18] DOI: 10.1109/69.806935 · Zbl 05109720 [19] DOI: 10.1021/ie990700g [20] DOI: 10.1002/cplx.6130010313 [21] DOI: 10.1109/59.744492 [22] DOI: 10.1109/TPWRS.2002.807051 [23] Peng H., Phys. Rev. E 81 pp 016207(11)– [24] Poli R., J. Artif. Evolut. Appl. 2008 pp 4– [25] DOI: 10.1162/evco.2006.14.1.119 · Zbl 05412876 [26] DOI: 10.1006/jtbi.1993.1060 [27] DOI: 10.1287/moor.6.1.19 · Zbl 0502.90070 [28] Wan M., Nonlin. Dyn. [29] Wodrich M., Cont. Cybernet. 26 pp 413– [30] DOI: 10.1109/4235.585893 · Zbl 05451863 [31] DOI: 10.1016/j.ins.2008.02.017 · Zbl 1283.65064 [32] DOI: 10.1007/978-3-540-72960-0_19 [33] Yao X., IEEE Trans. Evolut. Comput. 3 pp 82– · Zbl 05452199 [34] DOI: 10.1109/TITS.2010.2044793 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.