zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance. (English) Zbl 1248.93089
Summary: Robust adaptive modified function projective synchronization between two different hyperchaotic systems is investigated where external uncertainties are considered and the scale factors are different from each other. A synchronization criterion is presented, which can be realized by adaptive feedback controller with compensator to eliminate the influence of uncertainties effectively. The update laws of the unknown parameters are given and the sufficient conditions are deduced based on stability theory and adaptive control. Some mistakes in previous works are pointed out and revised. Finally, the hyperchaotic Lü and new hyperchaotic Lorenz systems are taken for example and numerical simulations are presented to verify the effectiveness and robustness of the proposed control scheme.

93C40Adaptive control systems
93C73Perturbations in control systems
93C15Control systems governed by ODE
37N35Dynamical systems in control
Full Text: DOI
[1] Yang, T.; Chua, L. O.: Secure communication via chaotic parameter modulation, IEEE trans circuits syst I 43, 817-819 (1996)
[2] Feki, M.: An adaptive chaos synchronization scheme applied to secure communication, Chaos soliton fract 3, 959-964 (2003) · Zbl 1048.93508
[3] Li, C.; Liao, X.; Wong, K.: Chaotic lag synchronization of coupled time-delayed systems and its application in secure communication, Physica D 194, 187-202 (2004) · Zbl 1059.93118 · doi:10.1016/j.physd.2004.02.005
[4] Chang, W. D.: Digital secure communication via chaotic systems, Digital signal process 19, 693-699 (2009)
[5] Nana, B.; Woafo, P.; Domngang, S.: Chaotic synchronization with experimental application to secure communications, Commun nonlinear sci numer simul 14, 2266-2276 (2009)
[6] Carroll, T. L.; Heagy, J. F.; Pecora, L. M.: Transforming signals with chaotic synchronization, Phys rev E 54, 4676-4680 (1996)
[7] Zhang, Y.; Sun, J.: Chaotic synchronization and anti-synchronization based on suitable separation, Phys lett A 330, 442-447 (2004) · Zbl 1209.37039 · doi:10.1016/j.physleta.2004.08.023
[8] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaotic oscillators, Phys rev lett 76, 1804-1807 (1996)
[9] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys rev lett 78, 4193-4196 (1997) · Zbl 0896.60090
[10] Boccaletti, S.; Valladares, D. L.: Characterization of intermittent lag synchronization, Phys rev E 62, 7497-7500 (2000)
[11] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.: Generalized synchronization of chaos in directionally coupled chaotic systems, Phys rev E 51, 980-994 (1995)
[12] Hramov, A. E.; Koronovskii, A. A.; Moskalenko, O. I.: Generalized synchronization onset, Europhys lett 72, 901-910 (2005)
[13] Hramov, A. E.; Koronovskii, A. A.: An approach to chaotic synchronization, Chaos 14, 603-610 (2004) · Zbl 1080.37029 · doi:10.1063/1.1775991
[14] Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems, Phys rev lett 82, 3042-3045 (1999)
[15] Du, H.; Zeng, Q.; Wang, C.: Function projective synchronization of different chaotic systems with uncertain parameters, Phys lett A 372, 5402-5410 (2008) · Zbl 1223.34077 · doi:10.1016/j.physleta.2008.06.036
[16] Du, H.; Zeng, Q.; Wang, C.; Ling, M.: Function projective synchronization in coupled chaotic systems, Nonlinear anal -- real 11, 705-712 (2010) · Zbl 1181.37039 · doi:10.1016/j.nonrwa.2009.01.016
[17] Wu, Z. Y.; Fu, X. C.: Adaptive function projective synchronization of discrete chaotic systems with unknown parameters, Chin phys lett 27, 050502 (2010)
[18] Sudheer, K. S.; Sabir, M.: Function projective synchronization in chaotic and hyperchaotic systems through open-plus-closed-loop coupling, Chaos 20, 013115 (2010) · Zbl 1311.34100
[19] Du, H.; Zeng, Q.; Wang, C.: Modified function projective synchronization of chaotic system, Chaos soliton fract 42, 2399-2404 (2009) · Zbl 1198.93011 · doi:10.1016/j.chaos.2009.03.120
[20] Sudheer, K. S.; Sabir, M.: Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lü system with uncertain parameters, Phys lett A 373, 3743-3748 (2009) · Zbl 1233.93060 · doi:10.1016/j.physleta.2009.08.027
[21] Wang, J. A.; Liu, H. P.: Adaptive modified function projective synchronization of different hyperchaotic systems, Acta phys sin 59, 2265-2271 (2010) · Zbl 1224.93075
[22] Chen, A.; Lu, J.; Lü, J.; Yu, S.: Generating hyperchaotic Lü attractor via state feedback control, Physica A 364, 103-110 (2006)
[23] Wang, X.; Wang, M.: A hyperchaos generated from Lorenz system, Physica A 387, 3751-3758 (2008)