×

Equivalent fuzzy sets. (English) Zbl 1249.03088

Summary: Necessary and sufficient conditions under which two fuzzy sets (in the most general, poset-valued setting) with the same domain have equal families of cut sets are given. The corresponding equivalence relation on the related fuzzy power set is investigated. The relationship of poset-valued fuzzy sets and fuzzy sets for which the co-domain is the Dedekind-MacNeille completion of that poset is deduced.

MSC:

03E72 Theory of fuzzy sets, etc.
06A15 Galois correspondences, closure operators (in relation to ordered sets)
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] Alkhamees Y.: Fuzzy cyclic subgroups and fuzzy cyclic p-subgroups. J. Fuzzy Math. 3 (1995), 4, 911-919 · Zbl 0843.20056
[2] Birkhoff G.: Lattice Theory. Amer. Math. Society, Providence, RI 1967 · Zbl 0537.06001
[3] Davey B. A., Priestley H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge 1992 · Zbl 1002.06001
[4] al. G. Gierz et: A Compendium of Continuous Lattices. Springer-Verlag, Berlin 1980 · Zbl 0452.06001
[5] Goguen J. A.: \(L\)-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174 · Zbl 0145.24404 · doi:10.1016/0022-247X(67)90189-8
[6] Luo Y. M. Liu amd M. K.: Fuzzy Topology. World Scientific, Singapore - New Jersey - Hong Kong 1997 · Zbl 0906.54006
[7] Makamba B. B.: Studies in Fuzzy Groups. Ph.D. Thesis, Rhodes University, Grahamstown 1992 · Zbl 0791.20091
[8] Murali V., Makamba B. B.: On an equivalence of fuzzy subgroups I. Fuzzy Sets and Systems 123 (2001), 259-264 · Zbl 1009.20080 · doi:10.1016/S0165-0114(00)00098-1
[9] Negoita C. V., Ralescu D. A.: Applications of Fuzzy Sets to System Analysis. Birkhäuser-Verlag, Basel 1975 · Zbl 0326.94002
[10] Šešelja B.: Fuzzy structures and collections of level structures. BUSEFAL 61 (1995), 5-8
[11] Šešelja B., Tepavčević A.: On generalizations of fuzzy algebras and congruences. Fuzzy Sets and Systems 65 (1994), 85-94 · Zbl 0844.08006 · doi:10.1016/0165-0114(94)90249-6
[12] Šešelja B., Tepavčević A.: Fuzzy groups and collection of subgroups. Fuzzy Sets and Systems 83 (1996), 85-91 · Zbl 0878.20052 · doi:10.1016/0165-0114(95)00332-0
[13] Šeselja B., Tepavčević A.: Completion of ordered structures by cuts of fuzzy sets. An overview. Fuzzy Sets and Systems 136 (2003), 1-19 · Zbl 1020.06005 · doi:10.1016/S0165-0114(02)00365-2
[14] Šeselja B., Tepavčević A.: Representing ordered structures by fuzzy sets. An overview. Fuzzy Sets and Systems 136 (2003), 21-39 · Zbl 1026.03039 · doi:10.1016/S0165-0114(02)00366-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.