×

The cancellation law for pseudo-convolution. (English) Zbl 1249.03103

Summary: The cancellation law for pseudo-convolutions based on triangular norms is discussed. In more detail, the cases of extremal t-norms \(T_M\) and \(T_D\), of continuous Archimedean t-norms and of general continuous t-norms are investigated. Several examples are included.

MSC:

03E72 Theory of fuzzy sets, etc.
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] Baets B. De, Marková-Stupňanová A.: Analytical expressions for the addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203-213 · Zbl 0919.04005 · doi:10.1016/S0165-0114(97)00141-3
[2] Golan J. S.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Sciences. (Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 54.) Longman, New York 1992 · Zbl 0780.16036
[3] Klement E.-P., Mesiar, R., Pap E.: Problems on triangular norms and related operators. Fuzzy Sets and Systems 145 (2004), 471-479 · Zbl 1050.03019 · doi:10.1016/S0165-0114(03)00303-8
[4] Klement E.-P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic, Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dortrecht 2000 · Zbl 1087.20041 · doi:10.1017/S1446788700008065
[5] Mareš M.: Computation Over Fuzzy Quantities. CRC Press, Boca Raton 1994 · Zbl 0859.94035
[6] Marková A.: T-sum of L-R fuzzy numbers. Fuzzy Sets and Systems 85 (1997), 379-384 · Zbl 0904.04007 · doi:10.1016/0165-0114(95)00370-3
[7] Marková-Stupňanová A.: A note on the idempotent functions with respect to pseudo-convolution. Fuzzy Sets and Systems 102 (1999), 417-421 · Zbl 0953.28012 · doi:10.1016/S0165-0114(98)00215-2
[8] Mesiar R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets and Systems 86 (1997), 73-78 · Zbl 0921.04002 · doi:10.1016/0165-0114(95)00401-7
[9] Mesiar R.: Triangular-norm-based addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 231-237 · Zbl 0919.04011 · doi:10.1016/S0165-0114(97)00143-7
[10] Moynihan R.: On the class of \(\tau _T\) semigroups of probability distribution functions. Aequationes Math. 12 (1975), 2/3, 249-261 · Zbl 0309.60013 · doi:10.1007/BF01836553
[11] Murofushi T., Sugeno M. : Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991), 51-57 · Zbl 0733.28014 · doi:10.1016/0165-0114(91)90089-9
[12] Pap E.: Decomposable measures and nonlinear equations. Fuzzy Sets and Systems 92 (1997), 205-221 · Zbl 0934.28015 · doi:10.1016/S0165-0114(97)00171-1
[13] Pap E.: Null-Additive Set Functions. Ister Science & Kluwer Academic Publishers, Dordrecht 1995 · Zbl 1003.28012
[14] Pap E., Štajner I.: Pseudo-convolution in the theory of optimalization, probabilistic metric spaces, information, fuzzy numbers, system theory. Proc. IFSA’97, Praha 1997, pp. 491-495
[15] Pap E., Štajner I.: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, system theory. Fuzzy Sets and Systems 102 (1999), 393-415 · Zbl 0953.28011 · doi:10.1016/S0165-0114(98)00214-0
[16] Pap E., Teofanov N.: Pseudo-delta sequences. Yugoslav. J. Oper. Res. 8 (1998), 111-128 · Zbl 0946.28014
[17] Riedel T.: On \(\sup \)-continuous triangle functions. J. Math. Anal. Appl. 184 (1994), 382-388 · Zbl 0802.60022 · doi:10.1006/jmaa.1994.1207
[18] Sugeno M. , Murofushi T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197- 222 · Zbl 0611.28010 · doi:10.1016/0022-247X(87)90354-4
[19] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 · Zbl 0812.28010
[20] Zagrodny D.: The cancellation law for inf-convolution of convex functions. Studia Mathematika 110 (1994), 3, 271-282 · Zbl 0811.49012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.