Ramane, H. S.; Revankar, D. S.; Gutman, I.; Walikar, H. B. Distance spectra and distance energies of iterated line graphs of regular graphs. (English) Zbl 1249.05251 Publ. Inst. Math., Nouv. Sér. 85(99), 39-46 (2009). The authors show that, if an \(r\)-regular graph \(G\) with \(n\) vertices does not contain any of four small graphs as an induced subgraph, then its \(k\)-th iterated line graph \(L(L(\dots L(G)\dots))\) has exactly one positive eigenvalue of the distance matrix, equal to \(r(n-2)\), regardless of the value of \(k\). Reviewer: Dragan Stevanović (Niš) Cited in 1 ReviewCited in 15 Documents MSC: 05C50 Graphs and linear algebra (matrices, eigenvalues, etc.) 05C12 Distance in graphs 05C76 Graph operations (line graphs, products, etc.) Keywords:distance energy; distance spectrum PDF BibTeX XML Cite \textit{H. S. Ramane} et al., Publ. Inst. Math., Nouv. Sér. 85(99), 39--46 (2009; Zbl 1249.05251) Full Text: DOI OpenURL