zbMATH — the first resource for mathematics

Lattices in filtered \((\varphi,N)\)-modules. (English) Zbl 1249.14006
Let \(k\) be a perfect field of characteristic \(p\), \(W(k)\) its ring of Witt vectors, \(K_0 = W(k)[1/p]\), \(K/K_0\) a finite totally ramified extension and \(G_K:=\mathrm{Gal}(\bar{K}/K)\). Let \(K'/K\) be a totally ramified Galois extension and write \(G = G_{K'} = \mathrm{Gal}(\bar{K}/K')\), \(\Gamma = \mathrm{Gal}(K'/K)\). Let \(\pi \in K'\) be a fixed uniformizer with the Eisenstein polynomial \(E(u)\). For any potentially semi-stable \(p\)-adic representation \(V\) of \(G_K\), Fontaine associated a filtered \((\varphi,N,G_K)\)-module \(D^*_{\mathrm{st}}(V)\) to \(V\). Important invariants of \(V\) can be read from \(D^*_{\mathrm{st}}(V)\) (such as Weil-Deligne representation attached to \(V\) if \(K\) is a finite extension over \(\mathbb{Q}_p\)). In this paper, the author construct integral and \(p^n\)-torsion structures attached to a \(G_K\)-stable \(\mathbb{Z}_p\)-lattice \(T\) in \(V\).
Integral Structure: The author defines a functor \(M_{\mathrm{st}}\) from the category \(\mathrm{Rep}^{\mathrm{pst},r}_{\mathbb{Q}_p}\) whose objects are representations of \(G_K\) which are semi-stable over \(K'\) with Hodge-Tate weights in \(\{0,\dots,r\}\), to the category \(L^r(\varphi,N,\Gamma)\), whose objects are lattices in filtered \((\varphi,N,\Gamma)\)-modules satisfying \(\mathrm{Fil}^0D_{K'} = D_{K'}\) and \(\mathrm{Fil}^{r+1}_{K'}D_{K'}=0\). Lattice here means finite free \(W(k)\)-module inside \(D_{\mathrm{st}}(V)\) which is stable under \(\varphi,N\) and the \(G_K\)-action. The definition of \(M_{\mathrm{st}}\) uses the theory of \((\varphi,\hat{G})\)-modules developed by the author in his paper [Math. Ann. 346, No. 1, 117–138 (2010; Zbl 1208.14017)]. Let \(V\) be a semi-stable representation of \(G\) with Hodge-Tate weights in \(\{0,\dots,r\}\), \(T \subset V\) a \(G_{K'}\)-stable \(\mathbb{Z}_p\)-lattice. A theorem of loc. cit. associates \(T\) a \((\varphi,\hat{G})\)-module \((\mathfrak{M},\varphi,\hat{G})\). Put \(M:=\mathfrak{M}/u\mathfrak{M} \subset \mathcal{D}/(I_+S_{K_0})\mathcal{D} =:D\). It can be shown that there exists a unique isomorphism \(i:D_{\mathrm{st}}(V) \simeq D\). Set \(M_{\mathrm{st}}(T):=i^{-1}(M) \subset D_{\mathrm{st}}(V)\). The main result is the following:

Theorem. The functor \(M_{\mathrm{st}}: \mathrm{Rep}^{\mathrm{pst},r}_{\mathbb{Q}_p} \to L^r(\varphi,N,\Gamma)\) is left exact and faithful. Moreover, the functor \(M_{\mathrm{st}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p\) associated to the isogeny categories is naturally isomorphic to \(D_{\mathrm{st}}\). If \(er<p-1\), then \(M_{\mathrm{st}}\) is exact and fully faithful.
\(p^n\)-torsion Structure: By \(\mathrm{Rep}_{\mathrm{tor}}^{\mathrm{pst},r}\), the author means the category whose objects are torsion potentially semi-stable representations with Hodge-Tate weights in \(\{0,\dots,r\}\), in the sense that, for any \(T \in \mathrm{Rep}_{\mathrm{tor}}^{\mathrm{pst},r}\), there exists \(G_K\)-stable \(\mathbb{Z}_p\)-lattices \(L\subset L'\) in a \(V \in \mathrm{Rep}_{\mathrm{tor}}^{\mathrm{pst},r}\) such that \(T \simeq L'/L\) as \(\mathbb{Z}_p[G_K]\)-modules. The pair \(L\subset L'\) is called a lift of \(T\), and denoted by \(\mathcal{L}: L \hookrightarrow L'\). By the theorem above, there exists a morphism \(\tilde{j}:M_{\mathrm{st}}(L') \to M_{\mathrm{st}}(L)\) in \(L^r(\varphi,N,\Gamma)\). Set \(M_{\mathrm{st},\mathcal{L}}(T) := M_{\mathrm{st}}(L)/\tilde{j}(M_{\mathrm{st}}(L'))\). It has \(G_K\)-action, Frobenius \(\varphi\) and monodromy \(N\) induced from \(M_{\mathrm{st}}(L)\). These form a category \(M_{\mathrm{tor}}(\varphi,N,\Gamma)\) whose objects are finite \(W(k)\)-modules \(M\) killed by some \(p\)-power and endowed with a Frobenius semi-linear map \(\varphi: D \to D\), a \(W(k)\)-linear map \(N:D \to D\) such that \(N\varphi = p\varphi N\), and a \(W(k)\)-linear \(\Gamma\)-action on \(D\) such that \(\Gamma\) commutes with \(\varphi\) and \(N\). The following main result says that the definition of \(M_{\mathrm{st},\mathcal{L}}(T)\) (does not totally depend on the lifts) is ‘unique’ up to \(p^{\mathfrak{c}}\) in the following sense:
Theorem. There exists a constant \(\mathfrak{c}\) only depending on \(e\) and \(r\) such that the following statement holds: for any morphism \(f:T' \to T\) in \(\mathrm{Rep}_{\mathrm{tor}}^{\mathrm{pst},r}\) and any lift \(\mathcal{L}', \mathcal{L}\) of \(T'\), \(T\) respectively, there exists a morphism \(g:M_{\mathrm{st},\mathcal{L}}(T) \to M_{\mathrm{st},\mathcal{L}'}(T')\) in \(M_{\mathrm{tor}}(\varphi,N,\Gamma)\) such that
(1) if there exists a morphism of lifts \(\hat{f}: \mathcal{L}' \to \mathcal{L}\) which lifts \(f\) then \(g = p^{\mathfrak{c}}M_{\mathrm{st},\hat{f}}(f)\);
(2) let \(f':T''\to T'\) be a morphism in \(\mathrm{Rep}_{\mathrm{tor}}^{\mathrm{pst},r}\) with \(\mathcal{L}''\) the lift of \(T''\) and \(g':M_{\mathrm{st},\mathcal{L}'}(T') \to M_{\mathrm{st},\mathcal{L}''}(T'')\) the morphism in \(M_{\mathrm{tor}}(\varphi,N,\Gamma)\) attached to \(f'\), \(\mathcal{L}'\) and \(\mathcal{L}''\); if there exists a morphism of lifts \(\hat{h}:\mathcal{L}'' \to \mathcal{L}\) which lifts \(f \circ f'\), then \(g'\circ g = p^{2\mathfrak{c}}M_{\mathrm{st},\hat{h}}(f\circ f')\).
Based on the above constructions, the paper provides two applications:
Application 1: Let \(V\) be a potentially semi-stable representation of \(G_K\) with Hodge-Tate weights in \(\{0, \dots, r\}\), and \(T \subset V\) a \(G_K\)-stable \(\mathbb{Z}_p\)-lattice. There exists a constant \(\alpha\) depending on the dimension \(d = \text{dim}_{\mathbb{Q}_p}(V)\), the absolute ramification index \(\tilde{e} = [K:K_0]\) and \(r\) such that \(V\) is semi-stable over \(K\) if and only if there exist \(G_K\)-stable \(\mathbb{Z}_p\)-lattices \(L' \subset L\) in a semi-stable representation \(W\) of \(G_K\) with Hodge-Tate weights in \(\{0,\dots,r\}\) satisfying \(T/p^{\alpha}T \simeq L/L'\).
Application 2: Let \(F\) be a totally real field and \(\pi\) a Hilbert eigenform of weight \(\underline{k} = (k_1, \dots, k_g)\) with \(k_i \geq 2\), integers all have the same parity. Let \(\rho_{\pi}\) denote the two-dimensional \(p\)-adic Galois representation of \(G_F := \text{Gal}(\overline{F}/F)\) attached to \(\pi\). If \(\mathfrak{q} \; | \; p\) is a prime of \(F\) and \(G_{F_{\mathfrak{q}}}\) denotes a decomposition group at \(\mathfrak{q}\), then \(\rho_{\pi} \; | \; G_{F_{\mathfrak{q}}}\) is potentially semi-stable with \(p\)-adic Hodge type corresponding to the weight \(\underline{k}\). Moreover, the Weil-Deligne representation attached to \(\rho_{\pi} \; | \; G_{F_{\mathfrak{q}}}\) via Fontaine’s construction corresponds to the local factor \(\pi_{\mathfrak{q}}\) of \(\pi\) via the local Langlands correspondence.
Reviewer: Xiao Xiao (Utica)

14F30 \(p\)-adic cohomology, crystalline cohomology
14L05 Formal groups, \(p\)-divisible groups
11S15 Ramification and extension theory
11S20 Galois theory
Full Text: DOI
[1] Fontaine, The Grothendieck Festschrift 87 pp 249– (1990)
[2] Taylor, Elliptic Curves, Modular Forms, and Fermat’s Last Theorem, Hong Kong, 1993 I pp 185– (1995)
[3] DOI: 10.1016/j.jalgebra.2010.10.005 · Zbl 1269.14001 · doi:10.1016/j.jalgebra.2010.10.005
[4] Caruso, Bull. Soc. Math. France 137 pp 158– (2009)
[5] Carayol, Annales Scient. Éc. Norm. Sup. 19 pp 409– (1986) · Zbl 0616.10025 · doi:10.24033/asens.1512
[6] Breuil, Bull. Soc. Math. France 127 pp 459– (1999) · Zbl 0933.11028 · doi:10.24033/bsmf.2357
[7] DOI: 10.1007/s002080050031 · Zbl 0883.11049 · doi:10.1007/s002080050031
[8] DOI: 10.1007/BF01232663 · Zbl 0829.11028 · doi:10.1007/BF01232663
[9] DOI: 10.1007/s00208-009-0392-y · Zbl 1208.14017 · doi:10.1007/s00208-009-0392-y
[10] DOI: 10.1112/S0010437X0700317X · Zbl 1133.14020 · doi:10.1112/S0010437X0700317X
[11] Liu, Annales Scient. Éc. Norm. Sup. 40 pp 633– (2007) · Zbl 1163.11043 · doi:10.1016/j.ansens.2007.05.002
[12] DOI: 10.1007/BF01388853 · Zbl 0705.11031 · doi:10.1007/BF01388853
[13] Skinner, Documenta Math. 14 pp 241– (2009)
[14] DOI: 10.1112/S0010437X09004175 · Zbl 1259.11060 · doi:10.1112/S0010437X09004175
[15] Fontaine, Astérisque 223 pp 59– (1994)
[16] DOI: 10.1016/j.jnt.2006.11.008 · Zbl 1131.14051 · doi:10.1016/j.jnt.2006.11.008
[17] DOI: 10.1090/S0894-0347-07-00576-0 · Zbl 1205.11060 · doi:10.1090/S0894-0347-07-00576-0
[18] DOI: 10.1007/978-0-8176-4532-8_7 · Zbl 1184.11052 · doi:10.1007/978-0-8176-4532-8_7
[19] Fontaine, Annales Scient. Éc. Norm. Sup. 15 pp 547– (1982) · Zbl 0579.14037 · doi:10.24033/asens.1437
[20] Fontaine, Astérisque 223 pp 113– (1994)
[21] Fontaine, Astérisque 223 pp 321– (1994)
[22] DOI: 10.1007/s002220000042 · Zbl 1010.14004 · doi:10.1007/s002220000042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.