Araruna, F. D.; Clark, M. R.; Lima, O. A. On internal elastic membrane with strong damping. (English) Zbl 1249.35217 Differ. Integral Equ. 24, No. 7-8, 601-618 (2011). Under some assumptions on \(M,A,F\) the authors prove existence and uniqueness of weak and strong solutions of the initial problem to the equation \(u_{tt}+M(\| u(t)\| ^2)Au(t)+Fu(t)+Au'(t)=0\) in a real Hilbert space, where \(t\in (0,T)\), \(M\) is degenerate real function and \(A,F\) are operators. Furthermore, energy decay \(E(t)\leq C(1+t)^{-(1+1/s)}\) of the initial Dirichlet boundary value problem to the equation \(u_{tt}-\| u(t)\| ^{2s}\Delta u+g(u)-\Delta u_t=0\) is established. Reviewer: Marie Kopáčková (Praha) Cited in 1 Document MSC: 35L70 Second-order nonlinear hyperbolic equations 35B40 Asymptotic behavior of solutions to PDEs 35A01 Existence problems for PDEs: global existence, local existence, non-existence 35L20 Initial-boundary value problems for second-order hyperbolic equations Keywords:Kirchhoff model; strong damping; asymptotic decay PDF BibTeX XML Cite \textit{F. D. Araruna} et al., Differ. Integral Equ. 24, No. 7--8, 601--618 (2011; Zbl 1249.35217)