×

Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles. (English) Zbl 1249.53029

Summary: Let \(\mu \: FX \to X\) be a principal bundle of frames with the structure group  \(\text{Gl}_{n}(\mathbb R)\). It is shown that the variational problem, defined by \(\text{Gl}_{n}(\mathbb R)\)-invariant Lagrangian on \(J^{r} FX\), can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations.

MSC:

53C05 Connections (general theory)
53C10 \(G\)-structures
58A20 Jets in global analysis
58E30 Variational principles in infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML Link

References:

[1] J. Brajerčík: Gln(\(\mathbb{R}\))-invariant variational principles on frame bundles. Balkan J. Geom. Appl. 13 (2008), 11–19.
[2] J. Brajerčík, D. Krupka: Variational principles for locally variational forms. J. Math. Phys. 46 (2005), 1–15. · Zbl 1110.58011
[3] M. Castrillón López, P. L. García Pérez, T. S. Ratiu: Euler-Poincaré reduction on principal bundles. Lett. Math. Phys. 58 (2001), 167–180. · Zbl 1020.58018
[4] M. Castrillón López, P. L. García Pérez, C. Rodrigo: Euler-Poincaré reduction in principal fibre bundles and the problem of Lagrange. Differ. Geom. Appl. 25 (2007), 585–593. · Zbl 1132.58001
[5] M. Castrillón López, T. S. Ratiu, S. Shkoller: Reduction in principal fiber bundles: Covariant Euler-Poincaré equations. Proc. Am. Math. Soc. 128 (2000), 2155–2164. · Zbl 0967.53019
[6] J. Dieudonné: Treatise on Analysis. Vol. I. Academic Press, New York-London, 1969. · Zbl 0176.00502
[7] P. L. García Pérez: Connections and 1-jet fiber bundles. Rend. Sem. Mat. Univ. Padova 47 (1972), 227–242.
[8] G. Giachetta, L. Mangiarotti, G. Sardanashvily: New Lagrangian and Hamiltonian Methods in Field Theory. World Scientific, Singapore, 1997. · Zbl 0913.58001
[9] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Vol. 1. Interscience Publishers/John Wiley & Sons, New York/London, 1963.
[10] I. Kolář: On the torsion of spaces with connection. Czech. Math. J. 21 (1971), 124–136. · Zbl 0216.18501
[11] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifolds. II. Invariance. J. Math. Anal. Appl. 49 (1975), 469–476. · Zbl 0312.58003
[12] D. Krupka: Local invariants of a linear connection. In: Differential Geometry. Colloq. Math. Soc. János Bolyai, Budapest, 1979, Vol. 31. North Holland, Amsterdam, 1982, pp. 349–369.
[13] D. Krupka, J. Janyška: Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Mathematica 1. University J.E. Purkyně, Brno, 1990.
[14] J.E. Marsden, T. S. Ratiu: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts Applied Mathematics, Vol. 17. Springer, New York, 1994. · Zbl 0811.70002
[15] D. J. Saunders: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series Vol. 142. Cambridge University Press, Cambridge, 1989. · Zbl 0665.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.