Romaguera, S.; Sánchez-Pérez, E. A.; Valero, O. Computing complexity distances between algorithms. (English) Zbl 1249.54069 Kybernetika 39, No. 5, 569-582 (2003). Summary: We introduce a new (extended) quasi-metric on the so-called dual \(p\)-complexity space, which is suitable to give a quantitative measure of the improvement in complexity obtained when a complexity function is replaced by a more efficient complexity function on all inputs, and show that this distance function has the advantage of possessing rich topological and quasi-metric properties. In particular, its induced topology is Hausdorff and completely regular.Our approach is applied to the measurement of distances between infinite words over the decimal alphabet and some advantages of our computations with respect to the ones that provide the classical Baire metric are discussed.Finally, we show that the application of fixed point methods to the complexity analysis of Divide and Conquer algorithms, presented by M. Schellekens [in: S. Brookes (ed.) et al., Mathematical foundations of programming semantics. Proceedings of the 11th conference (MFPS), Tulane Univ., New Orleans. Amsterdam: Elsevier, Electronic Notes in Theoretical Computer Science. 1, 22 p. (1995; Zbl 0910.68135)], can be also given from our approach. Cited in 11 Documents MSC: 54E50 Complete metric spaces 54H25 Fixed-point and coincidence theorems (topological aspects) 54H99 Connections of general topology with other structures, applications 68Q25 Analysis of algorithms and problem complexity Keywords:invariant extended quasi-metric; complexity function; balanced quasi-metric; infinite word; Baire metric Citations:Zbl 0910.68135 PDFBibTeX XMLCite \textit{S. Romaguera} et al., Kybernetika 39, No. 5, 569--582 (2003; Zbl 1249.54069) Full Text: EuDML Link References: [1] Bakker J. W. de, Vink E. P. de: Denotational models for programming languages: applications of Banach’s fixed point theorem. Topology Appl. 85 (1998), 35-52 · Zbl 0933.68086 · doi:10.1016/S0166-8641(97)00140-5 [2] Ćirić L.: Periodic and fixed point theorems in a quasi-metric space. J. Austral. Math. Soc. Ser. A 54 (1993), 80-85 · Zbl 0765.54040 · doi:10.1017/S1446788700036995 [3] Doitchinov D.: On completeness in quasi-metric spaces. Topology Appl. 30 (1988), 127-148 · Zbl 0668.54019 · doi:10.1016/0166-8641(88)90012-0 [4] Engelking R.: General Topology. Polish Sci. Publ., Warsaw 1977 · Zbl 0684.54001 [5] Fletcher P., Lindgren W. F.: Quasi-Uniform Spaces. Marcel Dekker, 1982 · Zbl 0583.54017 · doi:10.1017/S0017089500006303 [6] García-Raffi L. M., Romaguera, S., Sánchez-Pérez E. A.: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comput. Modelling 36 (2002), 1-11 · Zbl 1063.68057 · doi:10.1016/S0895-7177(02)00100-0 [7] Giles J. R.: Introduction to the Analysis of Metric Spaces. (Austral. Math. Soc. Lecture Series no. 3.) Cambridge Univ. Press, Cambridge 1987 · Zbl 0645.46001 [8] Hicks T. L.: Fixed point theorems for quasi-metric spaces. Math. Japon. 33 (1988), 231-236 · Zbl 0642.54047 [9] Jachymski J.: A contribution to fixed point theory in quasi-metric spaces. Publ. Math. Debrecen 43 (1993), 283-288 · Zbl 0814.47061 [10] Kahn G.: The semantics of a simple language for parallel processing. Proc. IFIP Congress, Elsevier and North-Holland, Amsterdam 1974, pp. 471-475 [11] Keimel K., Roth W.: Ordered Cones and Approximation. Springer-Verlag, Berlin 1992 · Zbl 0752.41033 [12] Kopperman R. D.: Lengths on semigroups and groups. Semigroup Forum 25 (1982), 345-360 · Zbl 0502.22002 · doi:10.1007/BF02573609 [13] Künzi H. P. A.: Nonsymmetric distances and their associated topologies: About the origin of basic ideas in the area of asymmetric topology. Handbook of the History of General Topology, Volume 3 (C. E. Aull and R. Lowen, Kluwer, Dordrecht 2001, pp. 853-968 · Zbl 1002.54002 [14] Künzi H. P. A., Ryser C.: The Bourbaki quasi-uniformity. Topology Proc. 20 (1995), 161-183 · Zbl 0876.54022 [15] Lecomte P., Rigo M.: On the representation of real numbers using regular languages. Theory Comput. Systems 35 (2002), 13-38 · Zbl 0993.68050 · doi:10.1007/s00224-001-1007-5 [16] Matthews S. G.: Partial metric topology. Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197 · Zbl 0911.54025 · doi:10.1111/j.1749-6632.1994.tb44144.x [17] Reilly I. L., Subrahmanyam P. V.: Some fixed point theorems. J. Austral. Math. Soc. Ser. A 53 (1992), 304-312 · Zbl 0772.54041 · doi:10.1017/S144678870003648X [18] Reilly I. L., Subrahmanyam P. V., Vamanamurthy M. K.: Cauchy sequences in quasi-pseudo-metric spaces. Monatsh. Math. 93 (1982), 127-140 · Zbl 0472.54018 · doi:10.1007/BF01301400 [19] Romaguera S., Sanchis M.: Semi-Lipschitz functions and best approximation in quasi-metric spaces. J. Approx. Theory 103 (2000), 292-301 · Zbl 0980.41029 · doi:10.1006/jath.1999.3439 [20] Romaguera S., Schellekens M.: Quasi-metric properties of complexity spaces. Topology Appl. 98 (1999), 311-322 · Zbl 0941.54028 · doi:10.1016/S0166-8641(98)00102-3 [21] Romaguera S., Schellekens M.: Duality and quasi-normability for complexity spaces. Appl. Gen. Topology 3 (2002), 91-112 · Zbl 1022.54018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.