×

Common fixed points of strict contractions in Menger spaces. (English) Zbl 1249.54077

The main purpose of the authors is to prove some common fixed point theorems under strict contractive conditions for mappings satisfying a newly defined property in Menger spaces.
Section 1 is an introduction and preliminaries. Section 2 contains the main results. In Section 3 related results in metric spaces are exposed. The paper ends with interesting examples.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E70 Probabilistic metric spaces
54E40 Special maps on metric spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270 (2002), 181–188. · Zbl 1008.54030
[2] M. S. El Naschie, A review of applications and results of E-infinity theory, Int. J. Nonlinear Sci. Numer. Simul., 8 (2007), 11–20. · Zbl 06942237
[3] J.-X. Fang and Y. Gao, Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Anal., 70 (2009), 184–193. · Zbl 1170.47061
[4] O. Hadzić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers (Dordrecht, 2001).
[5] M. Imdad, Javid Ali and L. Khan, Coincidence and fixed points in symmetric spaces under strict contractions, J. Math. Anal. Appl., 320 (2006), 352–360. · Zbl 1098.54033
[6] M. Imdad and Javid Ali, Jungck’s common fixed point theorem and E.A property, Acta Math. Sinica, 24 (2008), 87–94. · Zbl 1158.54021
[7] M. Imdad, Javid Ali and M. Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Chaos, Solitons & Fractals, 42 (2009), 3121–3129. · Zbl 1198.54076
[8] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771–779. · Zbl 0613.54029
[9] G. Jungck, Common fixed point for commuting and compatible maps on compacta, Proc. Amer. Math. Soc., 103 (1988), 977–983. · Zbl 0661.54043
[10] G. Jungck, Common fixed points for non continuous non self maps on non metric spaces, Far East J. Math. Sci., 4 (1996), 199–215. · Zbl 0928.54043
[11] S. Kasahara and B. E. Rhoades, Common fixed point theorems in compact metric spaces, Math. Japon., 23 (1978), 227–229. · Zbl 0402.54048
[12] I. Kubiaczyk and S. Sharma, Some common fixed point theorems in Menger space under strict contractive conditions, Southeast Asian Bull. Math., 32 (2008), 117–124. · Zbl 1199.54223
[13] Y. Liu, Jun Wu and Z. Li, Common fixed points of single-valued and multi-valued maps, Internat. J. Math. Math. Sci., 19 (2005), 3045–3055. · Zbl 1087.54019
[14] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942), 535–537. · Zbl 0063.03886
[15] K. Menger, Probabilistic geometry, Proc. Nat. Acad. Sci. USA, 37 (1951), 226–229. · Zbl 0042.37201
[16] D. Mihet, A note on a common fixed point theorem in probabilistic metric spaces, Acta Math. Hungar., 125 (2009), 127–130. · Zbl 1224.54095
[17] D. Mihet, Fixed point theorems in fuzzy metric spaces using property E.A, Nonlinear Anal., 73 (2010), 2184–2188. · Zbl 1195.54082
[18] D. Mihet, A generalization of a contraction principle in probabilistic metric spaces, II, Internat. J. Math. Math. Sci., 5 (2005), 729–736. · Zbl 1083.54535
[19] S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon., 36 (1991), 283–289. · Zbl 0731.54037
[20] R. P. Pant, Common fixed points of non commuting mappings, J. Math. Anal. Appl., 188 (1994), 436–440. · Zbl 0830.54031
[21] R. P. Pant, Common fixed points of contractive maps, J. Math. Anal. Appl., 226 (1998), 251–258. · Zbl 0916.54027
[22] R. P. Pant, R-weak commutativity and common fixed points, Soochow J. Math., 25 (1999), 37–42. · Zbl 0918.54038
[23] R. P. Pant and V. Pant, Common fixed point under strict contractive conditions, J. Math. Anal. Appl., 248 (2000), 327–332. · Zbl 0977.54038
[24] A. Razani and M. Shirdaryazdi, A common fixed point theorem of compatible maps in Menger space, Chaos, Solitons & Fractals, 32 (2007), 26–34. · Zbl 1134.54321
[25] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holland (New York, 1983). · Zbl 0546.60010
[26] V. M. Sehgal and A. T. Bharucha-Reid, Fixed point of contraction mappings on probabilistic metric spaces, Math. Systems Theory, 6 (1972), 97–102. · Zbl 0244.60004
[27] B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl., 301 (2005), 439–448. · Zbl 1068.54044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.