Extension to copulas and quasi-copulas as special \(1\)-Lipschitz aggregation operators. (English) Zbl 1249.60017

Summary: Smallest and greatest \(1\)-Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist).


60E05 Probability distributions: general theory
26B99 Functions of several variables
Full Text: EuDML Link


[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85-89 · Zbl 0798.60023
[2] Bertino S.: On dissimilarity between cyclic permutations. Metron 35 (1977), 53-88. In Italian
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, Physica-Verlag, Heidelberg 2002, pp. 3-104 · Zbl 1039.03015
[4] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section. Soft Computing · Zbl 1098.60016
[5] Frank M. J.: On the simultaneous associativity of \(F(x,y)\) and \(x+y-F(x,y)\). Aequationes Math. 19 (1979), 194-226 · Zbl 0444.39003
[6] Frank M. J.: Diagonals of copulas and Schröder’s equation. Aequationes Math. 51 (1996), 150
[7] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections. Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, Kluwer Academic Publishers, Dordrecht 1997, pp. 129-136 · Zbl 0906.60022
[8] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas. Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, Kluwer Academic Publishers, Dordrecht 2002, pp. 81-91 · Zbl 1135.62334
[9] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999) 193-205 · Zbl 0935.62059
[10] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 · Zbl 1087.20041
[11] Kolesárová A.: \(1\)-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615-629 · Zbl 1249.60018
[12] Kolesárová A., Mordelová J.: \(1\)-Lipschitz and kernel aggregation operators. Proc. AGOP ’2001, Oviedo 2001, pp. 71-76
[13] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 · Zbl 1152.62030
[14] Nelsen R. B., Fredricks G. A.: Diagonal copulas. Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, Kluwer Academic Publishers, Dordrecht 1997, pp. 121-127 · Zbl 0906.60021
[15] Nelsen R. B., Molina J. J. Quesada, Lallena J. A. Rodríguez, Flores M. Úbeda: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348-358 · Zbl 1057.62038
[16] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North-Holland, New York 1983 · Zbl 0546.60010
[17] Sklar A.: Fonctions de répartition à \(n\) dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231 · Zbl 0100.14202
[18] Sklar A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449-460 · Zbl 0292.60036
[19] Sungur E. A., Yang Y.: Diagonal copulas of Archimedean class. Comm. Statist. Theory Methods 25 (1996), 1659-1676 · Zbl 0900.62339
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.