×

zbMATH — the first resource for mathematics

A discussion on aggregation operators. (English) Zbl 1249.68229
Summary: Lately, it has become clear that aggregation processes cannot be based upon a unique binary operator. Global aggregation operators have been therefore introduced as families of aggregation operators \(\{T_n\}_n\), where the \(n\)-ary operator\(T_n\) amalgamates information whenever the number of items to be aggregated is \(n\). Of course, some mathematical restrictions can be introduced in order to assure an appropriate meaning, consistency and key mathematical capabilities.
In this paper, we discuss these standard conditions, pointing out their respective relevance.

MSC:
68T30 Knowledge representation
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966 · Zbl 0139.09301
[2] Amo A., Montero J., Biging, G., Cutello V.: Fuzzy classification systems. European J. Oper. Res. · Zbl 1056.90077 · doi:10.1016/S0377-2217(03)00002-X
[3] Amo A. Del, Montero, J., Molina E.: Additive recursive rules. Preferences and Decisions Under Incomplete Knowledge (J. Fodor et al, Physica-Verlag, Heidelberg 2000 · Zbl 0986.03040
[4] Amo A. Del, Montero, J., Molina E.: Representation of consistent recursive rules. European J. Oper. Res. 30 (2001), 29-53 · Zbl 1137.03322 · doi:10.1016/S0377-2217(00)00032-1
[5] Amo A. del, Montero, J., Biging G.: Classifying pixels by means of fuzzy relations. Internat. J. Gen. Systems 29 (2000), 605-621 · Zbl 0952.62056 · doi:10.1080/03081070008960964
[6] Amo A., Montero J., Fernández A., López M., Tordesillas, J., Biging G.: Spectral fuzzy classification: an application. IEEE Trans. Systems, Man and Cybernetics 32 (2002), 42-48 · doi:10.1109/TSMCC.2002.1009135
[7] Barlow R. E., Proschan F.: Statistical Theory of Reliability and Life Testing. To Begin With, Silver Spring 1981 · Zbl 0379.62080
[8] Cai K. Y.: Introduction to Fuzzy Reliability. Kluwer, Boston 1996 · Zbl 0877.68006
[9] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators. Physica-Verlag, Heidelberg 2002 · Zbl 0983.00020
[10] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. Aggregation Operators (T. Calvo et al, Physica-Verlag, Heidelberg 2002, pp. 3-104 · Zbl 1039.03015
[11] Cutello V., Montero J.: Recursive families of OWA operators. Proc. FUZZ-IEEE Conference (P. P. Bonisone, IEEE Press, Piscataway 1994, pp. 1137-1141
[12] Cutello V., Montero J.: Hierarchical aggregation of OWA operators: basic measures and related computational problems. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 3 (1995), 17-26 · Zbl 1232.90323 · doi:10.1142/S0218488595000037
[13] Cutello V., Montero J.: Recursive connective rules. Intelligent Systems 14 (1999), 3-20 · Zbl 0955.68103 · doi:10.1002/(SICI)1098-111X(199901)14:1<3::AID-INT2>3.0.CO;2-K
[14] Baets B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642 · Zbl 0933.03071 · doi:10.1016/S0377-2217(98)00325-7
[15] Dombi J.: Basic concepts for a theory of evaluation: the aggregative operator. European J. Oper. Res. 10 (1982), 282-293 · Zbl 0488.90003 · doi:10.1016/0377-2217(82)90227-2
[16] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht 1994 · Zbl 0827.90002
[17] Fung L. W., Fu K. S.: An axiomatic approach to rational decision making in a fuzzy environment. Fuzzy Sets and Their Applications to Cognitive and Decision Processes (L. Zadeh et al, Academic Press, New York 1975, pp. 227-256 · Zbl 0366.90003
[18] Golumbic M. C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York 1980 · Zbl 1050.05002
[19] Gómez D., Montero J., Yáñez J., González-Pachón, J., Cutello V.: Crisp dimension theory and valued preference relations. Internat. J. Gen. Systems · Zbl 1048.91035 · doi:10.1080/03081070310001633491
[20] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 · Zbl 1087.20041 · doi:10.1017/S1446788700008065
[21] Klement E. P., Mesiar, R., Pap E.: On the relationship of associative compensatory operators to triangular norms and conorms. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 4 (1996), 129-144 · Zbl 1232.03041 · doi:10.1142/S0218488596000081
[22] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, London 1988 · Zbl 0675.94025
[23] Kolesárová A., Komorníková M.: Triangular norm-based iterative compensatory operators. Fuzzy Sets and Systems 104 (1999), 109-120 · Zbl 0931.68123 · doi:10.1016/S0165-0114(98)00263-2
[24] Mak K. T.: Coherent continuous systems and the generalized functional equation of associativity. Mathem. Oper. Res. 12 (1987), 597-625 · Zbl 0648.39006 · doi:10.1287/moor.12.4.597
[25] Marichal J. L., Mathonet, P., Tousset E.: Characterization of some aggregation functions stable for positive linear transformations. Fuzzy Sets and Systems 102 (1999), 293-314 · Zbl 0952.91020 · doi:10.1016/S0165-0114(97)00128-0
[26] Mas M., Mayor G., Suñer, J., Torrens J.: Generation of multi-dimensional aggregation functions. Mathware and Soft Computing 5 (1998), 233-242 · Zbl 0955.03060 · eudml:39147
[27] Mas M., Mayor, G., Torrens J.: T-operators. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 7 (1999), 31-50 · Zbl 1087.03515 · doi:10.1142/S0218488599000039
[28] Mayor G., Calvo T.: On extended aggregation functions. Proc. IFSA Conference, Volume 1, Academia, Prague 1997, pp. 281-285
[29] Menger K.: Statistical methods. Proc. Nat. Acad. Sci. U.S.A. 8 (1942), 535-537 · Zbl 0063.03886 · doi:10.1073/pnas.28.12.535
[30] Mesiar R.: Compensatory operators based on triangular norms and conorms. Proc. EUFIT Conference (H.-J. Zimmermann, Elite Foundation, Aachen 1995, pp. 131-135
[31] Mesiar R., Komorníková M.: Aggregation operators. Proc. PRIM Conference, Institute of Mathematics, Novi Sad 1997, pp. 193-211 · Zbl 0960.03045
[32] Mesiar R., Komorníková M.: Triangular norm-based aggregation of evidence under fuzziness. Aggregation and Fussion of Imperfect Information (B. Bouchon-Meunier, Physica-Verlag, Heidelberg 1998, pp. 11-35
[33] Montero J.: A note on Fung-Fu’s theorem. Fuzzy Sets and Systems 17 (1985), 259-269 · Zbl 0606.90008 · doi:10.1016/0165-0114(85)90092-2
[34] Montero J.: Aggregation of fuzzy opinions in a fuzzy group. Fuzzy Sets and Systems 25 (1988), 15-20 · Zbl 0662.90007 · doi:10.1016/0165-0114(88)90095-4
[35] Montero J., Amo A., Molina, E., Cutello V.: On the relevance of OWA rules. Proc. IPMU Conference, Volume 2, Universidad Politécnica de Madrid, Madrid 2000, pp. 992-996
[36] Montero J., Tejada, J., Yáñez J.: Structural properties of continuous systems. European J. Oper. Res. 45 (1990), 231-240 · Zbl 0718.93036 · doi:10.1016/0377-2217(90)90188-H
[37] Pattanaik P. : Voting and Collective Choice. Cambridge Univ. Press, Cambridge 1970
[38] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North Holland, Amsterdam 1983 · Zbl 0546.60010
[39] Shirland L. E., Jesse R. R., Thompson R. L., Iacovou C. L.: Determining attribute weights using mathematical programming. Omega 31 (2003), 423-437 · doi:10.1016/S0305-0483(03)00081-1
[40] Trillas E.: Sobre funciones de negación en la teoría de los subconjuntos difusos. Stochastica III-1:47-59, 1983; English version in : Advances of Fuzzy Logic Universidad de Santiago de Compostela (S. Barro et al, Santiago de Compostela 1998, pp. 31-43
[41] Walther G.: Granulometric smoothing. Ann. Statist. 25 (1999), 2273-2299 · Zbl 0919.62026 · doi:10.1214/aos/1030741072
[42] Yager R. R.: On ordered averaging aggregation operators in multicriteria decision making. IEEE Trans. Systems, Man and Cybernetics 18 (1988), 183-190 · Zbl 0637.90057 · doi:10.1109/21.87068
[43] Yager R. R., Rybalov A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111-120 · Zbl 0871.04007 · doi:10.1016/0165-0114(95)00133-6
[44] Zadeh L. A.: Fuzzy Sets. Inform. and Control 8 (1965), 338-353 · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[45] Zimmermann H. J., Zysno P.: Latent connectives in human decision making. Fuzzy Sets and Systems 4 (1980), 37-51 · Zbl 0435.90009 · doi:10.1016/0165-0114(80)90062-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.