×

A necessity measure optimization approach to linear programming problems with oblique fuzzy vectors. (English) Zbl 1249.90350

Summary: A necessity measure optimization model for linear programming problems with fuzzy oblique vectors is discussed. It is shown that the problems are reduced to linear fractional programming problems. Utilizing a special structure of the reduced problem, we propose a solution algorithm based on Bender’s decomposition. A numerical example is given.

MSC:

90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
90C05 Linear programming
49M27 Decomposition methods
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] Inuiguchi M.: Necessity optimization in linear programming problems with interactive fuzzy numbers. Proc. 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty (H. Noguchi, H. Ishii and M. Inuiguchi, Awaji Yumebutai ICC, 2004, pp. 9-14
[2] Inuiguchi M., Ramík J.: Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems 111 (2000), 1, 3-28 · Zbl 0938.90074 · doi:10.1016/S0165-0114(98)00449-7
[3] Inuiguchi M., Ramík, J., Tanino T.: Oblique fuzzy vectors and their use in possibilistic linear programming. Fuzzy Sets and Systems 137 (2003), 1, 123-150 · Zbl 1026.90104 · doi:10.1016/S0165-0114(02)00252-X
[4] Inuiguchi M., Sakawa M.: A possibilistic linear program is equivalent to a stochastic linear program in a special case. Fuzzy Sets and Systems 76 (1995), 309-318 · Zbl 0856.90131 · doi:10.1016/0165-0114(94)00364-7
[5] Inuiguchi M., Tanino T.: Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems 115 (2000), 1, 83-92 · Zbl 0982.91028 · doi:10.1016/S0165-0114(99)00026-3
[6] Inuiguchi M., Tanino T.: Possibilistic linear programming with fuzzy if-then rule coefficients. Fuzzy Optimization and Decision Making 1 (2002), 1, 65-91 · Zbl 1056.90142 · doi:10.1023/A:1013727809532
[7] Inuiguchi M., Tanino T.: Fuzzy linear programming with interactive uncertain parameters. Reliable Computing 10 (2004), 5, 357-367 · Zbl 1048.65062 · doi:10.1023/B:REOM.0000032118.34323.f2
[8] Lasdon L. S.: Optimization Theory for Large Systems. Macmillan, New York 1970 · Zbl 0991.90001
[9] Rommelfanger H., Kresztfalvi T.: Multicriteria fuzzy optimization based on Yager’s parameterized t-norm. Found. Computing and Decision Sciences 16 (1991), 2, 99-110 · Zbl 0814.90130
[10] Zimmermann H.-J.: Applications of fuzzy set theory to mathematical programming. Inform. Sci. 36 (1985), 1-2, 29-58 · Zbl 0578.90095 · doi:10.1016/0020-0255(85)90025-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.