×

A classical decision theoretic perspective on worst-case analysis. (English) Zbl 1249.91023

This refreshing article partly deviates from the majority of papers one can find in mathematical journals. Indeed, it is not common to quote a play by William Shakespeare in mathematics-oriented papers. The author clearly wishes to flavor his work by a pinch of philosophy.
The goal of the paper is to demonstrate that various seemingly different approaches to handling uncertain data, such as worst-case analysis, information-gap modeling, robust optimization or decision-making under uncertainty, can be formulated in a unified way as a maximin problem: Find \(z\in \mathbb{R}\) such that \[ z=\max _{d\in D} \min _{s\in S(d)} f(d,s), \] where \(D\) represents a decision space, \(S(d)\) denotes the set of states associated with the decisions \(d\in D\), and \(f\) stands for an objective function.

MSC:

91B06 Decision theory
91A05 2-person games
90C47 Minimax problems in mathematical programming
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI EuDML Link

References:

[1] S. Adali, I. Elishakoff, A. Richter, V.E. Verijenko: Optimal design of symmetric angle-ply laminates for maximum buckling load with scatter in material properties. Fifth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. AIAA Press, Panama City Beach, 1994, pp. 1041–1045.
[2] S. Adali, A. Richter, V. E. Verijenko: Minimum weight design of symmetric angle-ply laminates with incomplete information on initial imperfections. J. Appl. Mech. 64 (1997), 90–96. · Zbl 1002.74569 · doi:10.1115/1.2787299
[3] Y. Ben-Haim: Information Gap Decision Theory. Academic Press, San Diego, 2001.
[4] Y. Ben-Haim: Info-Gap Decision Theory. Elsevier, Amsterdam, 2006.
[5] A. Ben-Tal, L. El Ghaoui, A. Nemirovski: Robust Optimization. Princeton University Press, Princeton, 2009. · Zbl 1221.90001
[6] A.R. de Faria, S. F.M. de Almeida: Buckling optimization of plates with variable thickness subjected to nonuniform uncertain loads. Int. J. Solids Struct. 40 (2003), 3955–3966. · Zbl 1038.74604 · doi:10.1016/S0020-7683(03)00177-X
[7] V.M. Demyanov, V.N. Malozemov: Introduction to Minimax. Dover Publications, New York, 1990.
[8] D. Z. Du, P.M. Pardalos: Minimax and Applications. Kluwer, Dordrecht, 1995.
[9] I. Elishakoff: Uncertain buckling: its past, present and future. Int. J. Solids Struct. 37 (2000), 6869–6889. · Zbl 0980.74022 · doi:10.1016/S0020-7683(99)00318-2
[10] S.D. French: Decision Theory. Ellis Horwood, Chichester, 1988.
[11] J.C. Harsanyi: Can the maximin principle serve as a basis for morality? A critique of John Rawls’s theory. Essays on Ethics, Social Behavior, and Scientific Explanation. Springer, Berlin, 1976, pp. 37–63.
[12] I. Hlavaček: Uncertain input data problems and the worst scenario method. Appl. Math. 52 (2007), 187–196. · Zbl 1164.93354 · doi:10.1007/s10492-007-0010-9
[13] I. Hlavaček, J. Chleboun, I. Babuška: Uncertain Input Data Problems and the Worst Scenario Method. Elsevier, Amsterdam, 2004.
[14] P. J. Huber: Robust Statistics. Wiley, New York, 1981.
[15] L. Hurwicz: A class of criteria for decision-making under ignorance. Cowles Commission Discussion Paper: Statistics No. 356, 1951.
[16] P. Kouvelis, G. Yu: Robust Discrete Optimization and Its Applications. Kluwer, Dordrecht, 1997. · Zbl 0873.90071
[17] M. Lombardi: Optimization of uncertain structures using non-probabilistic models. Comput. Struct. 67 (1998), 99–103. · Zbl 0933.74052 · doi:10.1016/S0045-7949(97)00161-2
[18] J. Rawls: Theory of Justice. Belknap Press, Cambridge, 1973.
[19] R. Reemsten, J. Ruckmann, eds.: Semi-Infinite Programming. Workshop, Cottbus, Germany, September 1996. Kluwer, Boston, 1998.
[20] M.D. Resnik: Choices: An Introduction to Decision Theory. University of Minnesota Press, Minneapolis, 1987.
[21] B. Rustem, M. Howe: Algorithms for Worst-case Design and Applications to Risk Management. Princeton University Press, Princeton, 2002. · Zbl 1140.90013
[22] L. J. Savage: The theory of statistical decision. J. Am. Stat. Assoc. 46 (1951), 55–67. · Zbl 0042.14302 · doi:10.1080/01621459.1951.10500768
[23] M. Sniedovich: The art and science of modeling decision-making under severe uncertainty. Decis. Mak. Manuf. Serv. 1 (2007), 111–136. · Zbl 1231.90243
[24] M. Sniedovich: Wald’s Maximin Model: a Treasure in Disguise. J. Risk Finance 9 (2008), 287–291. · doi:10.1108/15265940810875603
[25] M. Sniedovich: FAQS about Info-Gap decision theory. Working Paper No. MS-12-08. Department of Mathematics and Statistics, The University of Melbourne, Melbourne, 2008, info-gap.moshe-online.com/faqs_about_infogap.pdf .
[26] G. Tintner: AbrahamWald’s contributions to econometrics. Ann. Math. Stat. 23 (1952), 21–28. · Zbl 0046.37601 · doi:10.1214/aoms/1177729482
[27] J. von Neumann: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100 (1928), 295–320. (In German.) · doi:10.1007/BF01448847
[28] J. von Neumann, O. Morgenstern: Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1944. · Zbl 0063.05930
[29] A. Wald: Contributions to the theory of statistical estimation and testing hypotheses. Ann. Math. Stat. 10 (1939), 299–326. · Zbl 0024.05405 · doi:10.1214/aoms/1177732144
[30] A. Wald: Statistical decision functions which minimize the maximum risk. Ann. Math. 46 (1945), 265–280. · Zbl 0063.08126 · doi:10.2307/1969022
[31] A. Wald: Statistical Decision Functions. J. Wiley & Sons, New York, 1950. · Zbl 0040.36402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.