×

The technique of splitting operators in perturbation control theory. (English) Zbl 1249.93057

Summary: The paper presents the technique of splitting operators, intended for perturbation analysis of control problems involving unitary matrices. Combined with the technique of Lyapunov majorants and the application of the Banach or Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the general feedback synthesis problem, and the pole assignment problem in particular, as well as other basic problems in control theory and linear algebra.

MSC:

93B35 Sensitivity (robustness)
93B28 Operator-theoretic methods
93B10 Canonical structure
93B50 Synthesis problems
93B55 Pole and zero placement problems
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] Grebenikov E. A., Ryabov, Yu. A.: Constructive Methods for Analysis of Nonlinear Systems (in Russian). Nauka, Moscow 1979 · Zbl 0466.65041
[2] Hermann R., Martin C. L.: Application of algebraic geometry to systems theory. Part I. IEEE Trans. Automatic Control 22 (1977), 19-25 · Zbl 0355.93013 · doi:10.1109/TAC.1977.1101395
[3] Higham N. J.: Optimization by direct search in matrix computations. SIAM J. Matrix Anal. Appl. 14 (1993), 317-333 · Zbl 0776.65047 · doi:10.1137/0614023
[4] Kantorovich L. V., Akilov G. P.: Functional Analysis in Normed Spaces. Pergamon, New York 1964 · Zbl 0127.06104
[5] Konstantinov M., Mehrmann, V., Petkov P.: Perturbation Analysis for the Hamiltonian Schur Form. Technical Report 98-17, Fakultät für Mathematik, TU-Chemnitz, Chemnitz 1998 · Zbl 1016.15007 · doi:10.1137/S0895479898342420
[6] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups. Kybernetika 17 (1981), 413-424 · Zbl 0474.93020
[7] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Nonlocal perturbation analysis of the Schur system of a matrix. SIAM J. Matrix Anal. Appl. 15 (1994), 383-392 · Zbl 0798.15010 · doi:10.1137/S089547989120267X
[8] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Sensitivity analysis of the feedback synthesis problem. IEEE Trans. Automatic Control 42 (1997), 568-573 · Zbl 0878.93020 · doi:10.1109/9.566671
[9] Konstantinov M. M., Petkov P. Hr., Christov N. D., Gu D. W., Mehrmann V.: Sensitivity of Lyapunov equations. Advances in Intelligent Systems and Computer Science (N. E. Mastorakis. WSES Press, 1999, pp. 289-292
[10] Konstantinov M. M., Petkov P. Hr., Gu D. W., Postlethwaite I.: Perturbation Analysis in Finite Dimensional Spaces. Tech. Rep. 96-18, Engineering Department, Leicester University, Leicester 1996 · Zbl 0923.93006
[11] Konstantinov M. M., Petkov P. Hr., Gu D. W., Postlethwaite I.: Perturbation analysis of orthogonal canonical forms. Linear Algebra Appl. 251 (1997), 267-291 · Zbl 0928.93012 · doi:10.1016/0024-3795(95)00647-8
[12] Ortega J., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York 1970 · Zbl 0949.65053 · doi:10.1137/1.9780898719468
[13] Petkov P. Hr., Christov N. D., Konstantinov M. M.: A new approach to the perturbation analysis of linear control problems. Preprints 11th IFAC World Congr., Tallin 1990, pp. 311-316
[14] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Computational Methods for Linear Control Systems. Prentice-Hall, New York 1991 · Zbl 0790.93001
[15] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Sensitivity of orthogonal canonical forms for single-input systems. Proc. 22nd Spring Conference of UBM, Sofia 1992, pp. 66-73
[16] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Perturbation analysis of orthogonal canonical forms and pole assignment for single-input systems. Proc. 2nd European Control Conference, Groningen 1993, pp. 1397-1400
[17] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Perturbation controllability analysis of linear multivariable systems. Preprints 12th IFAC World Congress, Sydney 1993, pp. 491-494
[18] Sun J.-G.: On perturbation bounds for the QR factorization. Linear Algebra Appl. 215 (1995), 95-111 · Zbl 0816.15010 · doi:10.1016/0024-3795(93)00077-D
[19] Sun J.-G.: Perturbation bounds for the generalized Schur decomposition. SIAM J. Matrix Anal. Appl. 16 (1995), 1328-1340 · Zbl 0878.15006 · doi:10.1137/S0895479892242189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.