×

zbMATH — the first resource for mathematics

Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization. (English) Zbl 1249.93090
Summary: This paper shows that a large class of chaotic systems, introduced by S. Čelikovský and G. Chen in [Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system (see G. Chen and T. Ueta [Int. J. Bifurcation Chaos Appl. Sci. Eng. 9, No. 7, 1465–1466 (1999; Zbl 0962.37013)]), the hyperbolic-type generalized Lorenz system is in some way complementary to it. Synchronization of two such systems is made through a scalar coupling signal based on nonlinear observer design using special change of coordinates to the so-called observer canonical form of the hyperbolic-type generalized Lorenz system. The properties of the suggested synchronization that make it attractive for the secure encrypted communication application are discussed in detail. Theoretical results are supported by the computer simulations, showing viability of the suggested approach.

MSC:
93C10 Nonlinear systems in control theory
93D20 Asymptotic stability in control theory
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] Agiza H. N., Yassen M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278 (2000), 191-197 · Zbl 0972.37019
[2] Alvarez-Ramirez J., Puebla, H., Cervantes I.: Stability of observer-based chaotic communications for a class of Lur’e systems. Internat. J. Bifur. Chaos 7 (2002), 1605-1618
[3] Blekman I. I., Fradkov A. L., Nijmeijer, H., Pogromsky A. Y.: On self-synchronization and controlled synchronization. Systems Control Lett. 31 (1997), 299-305 · Zbl 0901.93028
[4] Čelikovský S., Vaněček A.: Bilinear systems and chaos. Kybernetika 30 (1994), 403-424 · Zbl 0823.93026
[5] Čelikovský S., Chen G.: On a generalized Lorenz canonical form of chaotic systems. Internat. J. Bifur. Chaos 12 (2002), 1789-1812 · Zbl 1043.37023
[6] Čelikovský S., Chen G.: Synchronization of a class of chaotic systems via a nonlinear observer approach. Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 3895-3900
[7] Čelikovský S., Chen G.: Hyperbolic-type generalized Lorenz system and its canonical form. Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM
[8] Čelikovský S., Ruiz-Léon J. J., Sapiens A. J., Torres-Muñoz J. A.: Output feedback problems for a class of nonlinear systems. Kybernetika 39 (2003), 389-414 · Zbl 1249.93073
[9] Chen G., Dong X.: From Chaos to Order: Methodologies, Perspectives, and Applications. World Scientific, Singapore 1998 · Zbl 0908.93005
[10] Chen G., Ueta T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465-1466 · Zbl 0962.37013
[11] Dachselt F., Schwartz W.: Chaos and cryptography. IEEE Trans. Circuits and Systems 48 (2001), 1498-1509 · Zbl 0999.94030
[12] Fradkov A. L., Nijmeijer, H., Pogromsky A. Yu.: Adaptive observer based synhronization. Controlling Chaos and Bifurcations in Engineering Systems (G. Chen, CRC Press, Boca Raton 1999, pp. 417-435 · Zbl 1068.93523
[13] Grassi G., Mascolo S.: Synchronization of high-order oscillators by observer design with application to hyperchaos-based cryptography. Internat. J. Circuit Theory Appl. 27 (1999), 543-553 <a href=”http://dx.doi.org/10.1002/(SICI)1097-007X(199911/12)27:63.0.CO;2-4” target=”_blank”>DOI 10.1002/(SICI)1097-007X(199911/12)27:63.0.CO;2-4 | · Zbl 0961.37029
[14] Itoh M., Chua L. O.: Reconstruction and synchronization of hyperchaotic circuits via one state variable. Internat. J. Bifur. Chaos 12 (2002), 2069-2085 · Zbl 1046.94019
[15] Krener A. J.: Nonlinear stabilizability and detectability. Systems and Networks: Mathematical Theory and Applications, Vol. I (U. Helmke, R. Mennicken, and J. Sauer, Akademie Verlag, Berlin 199x, pp. 231-250 · Zbl 0816.93067
[16] Krener A. J., Isidori A.: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 47-52 · Zbl 0524.93030
[17] Krener A. J., Respondek W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197-216 · Zbl 0569.93035
[18] Lian J., Liu P.: Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis. IEEE Trans. Circuits and Systems 47 (2000), 1418-1424 · Zbl 1011.94033
[19] Lü J., Chen G., Cheng, D., Čelikovský S.: Bridge the gap between the Lorenz system and the Chen system. Internat. J. Bifur. Chaos 12 (2002), 2917-2926 · Zbl 1043.37026
[20] Marino P., Tomei P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice-Hall, London 1991 · Zbl 0833.93003
[21] Nijmeijer H., Shaft A. J. van der: Nonlinear Dynamical Control Systems. Springer-Verlag, New York 1990
[22] Nijmeijer H.: A dynamical control view on synchronization. Phys. D 154 (2001), 219-228 · Zbl 0981.34053
[23] Pecora L., Carrol T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824 · Zbl 0938.37019
[24] Pogromsky A., Santoboni, G., Nijmeijer H.: Partial Synchronization: from symmetry towards stability. Phys. D 172 (2002), 65-87 · Zbl 1008.37012
[25] Santoboni G., Pogromsky A. Y., Nijmeijer H.: An observer for phase synchronization of chaos. Phys. Lett. A 291 (2001), 265-273 · Zbl 0977.37047
[26] Santoboni G., Pogromsky A. Y., Nijmeijer H.: Partial observer and partial synchronization. Internat. J. Bifur. Chaos 13 (2003), 453-458 · Zbl 1129.93513
[27] Shilnikov A. L., Shilnikov L. P., Turaev D. V.: Normal forms and Lorenz attractors. Internat. J. Bifur. Chaos 3 (1993), 1123-1139 · Zbl 0885.58080
[28] Solak E., Morgül, Ö., Ersoy U.: Observer-based control of a class of chaotic systems. Phys. Lett. A 279 (2001), 47-55 · Zbl 0972.37020
[29] Ueta T., Chen G.: Bifurcation analysis of Chen’s equation. Internat. J. Bifur. Chaos 10 (2000), 1917-1931 · Zbl 1090.37531
[30] Vaněček A., Čelikovský S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London 1996 · Zbl 0874.93006
[31] Wang X.: Chen’s attractor - a new chaotic attractor (in Chinese). Control Theory Appl. 16 (1999), 779
[32] Wiggins S.: Global Bifurcation and Chaos: Analytical Methods. Springer-Verlag, New York 1988 · Zbl 0661.58001
[33] Zhong G.-Q., Tang K. S.: Circuit implementaion and synchronization of Chen’s attractor. Internat. J. Bifur. Chaos 12 (2002), 1423-1427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.