×

zbMATH — the first resource for mathematics

Application of a second order VSC to nonlinear systems in multi-input parametric-pure-feedback form. (English) Zbl 1249.93101
Summary: The use of a multi-input control design procedure for uncertain nonlinear systems expressible in multi-input parametric-pure feedback form to determine the control law for a class of mechanical systems is described in this paper. The proposed procedure, based on the well-known backstepping design technique, relies on the possibility of extending to multi-input uncertain systems a second order sliding mode control approach recently developed, thus reducing the computational load, as well as increasing robustness.
MSC:
93C35 Multivariable systems, multidimensional control systems
93C10 Nonlinear systems in control theory
93B12 Variable structure systems
70Q05 Control of mechanical systems
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] Bartolini G., Ferrara A., Giacomini L., Usai E.: A combined backstepping/second order sliding mode approach to control a class of nonlinear systems. Proc. IEEE International Workshop on Variable Structure Systems. Tokyo 1996 · Zbl 0988.93010
[2] Bartolini G., Ferrara A., Usai E.: Applications of a suboptimal discontinuous control algorithm for uncertain second order systems. Internat. J. Robust Nonlin. Control 7 (1997), 299-320 <a href=”http://dx.doi.org/10.1002/(SICI)1099-1239(199704)7:43.0.CO;2-3” target=”_blank”>DOI 10.1002/(SICI)1099-1239(199704)7:43.0.CO;2-3 | · Zbl 0875.93057
[3] Bartolini G., Ferrara A., Usai E.: Chattering avoidance by second-order sliding modes control. IEEE Trans. Automat. Control 34 (1998), 2, 241-246 · Zbl 0904.93003 · doi:10.1109/9.661074
[4] Bartolini G., Ferrara A., Usai E., Utkin V. I.: Second order chattering-free sliding mode control for some classes of multi-input uncertain nonlinear systems. Proc. of the 6th IEEE Mediterranean Conference on Control and Systems. Alghero 1998 · Zbl 0990.93012
[5] Diong B. M., Medanic J. V.: Simplex-type variable structure controllers for systems with non-matching disturbances and uncertainties. Internat. J. Control 68 (1997), 625-656 · Zbl 0882.93010 · doi:10.1080/002071797223550
[6] Kanellakopoulos I., Kokotovic P. V., Morse A. S.: Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Automat. Control 36 (1991), 1241-1253 · Zbl 0768.93044 · doi:10.1109/9.100933
[7] Kirk D. E.: Optimal control theory. Prentice Hall, Englewood Cliffs, N.J. 1970
[8] Kokotović P. V., Krstić M., Kanellakopoulos I.: Nonlinear and Adaptive Control Design. Wiley, New York 1995 · Zbl 0763.93043
[9] Levant A.: Sliding order and sliding accuracy in sliding mode control. Internat. J. Control 58 (1993), 1247-1263 · Zbl 0789.93063 · doi:10.1080/00207179308923053
[10] Levant A.: Higher order sliding: collection of design tools. European Control Conference, Bruxelles 1997
[11] Nam K., Arapostathis A.: A model reference adaptive control scheme for pure-feedback non-linear systems. IEEE Trans. Automat. Control 33 (1988), 803-811 · Zbl 0649.93040 · doi:10.1109/9.1308
[12] Seto D., Annaswamy A. M., Baillieul J.: Adaptive control of a class of nonlinear systems with a triangular structure. IEEE Trans. Automat. Control 39 (1994), 1411-1428 · Zbl 0806.93034 · doi:10.1109/9.299624
[13] Spong M. W., Vidyasagar M.: Robot Dynamics and Control. Wiley, New York 1989
[14] Su R., Hunt L. R.: A canonical expansion for nonlinear systems. IEEE Trans. Automat. Control 31 (1986), 670-673 · Zbl 0618.93028 · doi:10.1109/TAC.1986.1104358
[15] Utkin V. I.: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 1992 · Zbl 0748.93044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.