×

zbMATH — the first resource for mathematics

The structure of nonlinear time delay systems. (English) Zbl 1249.93102
Summary: Multivariable nonlinear systems with time delays are considered. The delays are supposed to be constant but not commensurate. The goal of this paper is to give a structure algorithm which displays some system invariants for this class of systems.

MSC:
93C35 Multivariable systems, multidimensional control systems
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: EuDML Link
References:
[1] Conte G., Moog C. H., Perdon A. M.: Nonlinear Control Systems: An Algebraic Setting. (Lecture Notes in Control and Information Sciences 242.) Springer-Verlag, London 1999 · Zbl 0920.93002
[2] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring. SIAM J. Control Optim. 33 (1995), 750-764 · Zbl 0831.93011
[3] Hale J.: Theory of Functional Differential Equations. Springer Verlag, New York 1977 · Zbl 1092.34500
[4] Iwai Z., Seborg D. E., Fisher D. G., Kobayashi N.: Decoupling of linear time variant systems with time delays in the control variable or state variable. Internat. J. Control 28 (1978), 869-888 · Zbl 0386.93033
[5] Malabre M., Rabah R.: Structure at infinity, model matching, and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 485-498 · Zbl 0805.93008
[6] Márquez-Martínez L. A., Moog C. H., Velasco-Villa M.: The structure of nonlinear time-delay systems. 6th IEEE MCCS. Sardinia 1998 · Zbl 0972.93044
[7] Moog C. H., Castro-Linares R., Velasco-Villa M., Márquez-Martínez L. A.: The disturbance decoupling problem for time-delay systems. IEEE Trans. Automat. Control. To appear · Zbl 0972.93044
[8] Singh S. N.: A modified algorithm for invertibility in nonlinear systems. IEEE Trans. Automat. Control 14 (1981), 595-598 · Zbl 0488.93026
[9] Tzafestas S. G., Paraskevopoulos P. N.: On the decoupling of multivariable control systems with time delay systems. Internat. J. Control 17 (1973), 2, 405-415 · Zbl 0246.93023
[10] Velasco-Villa M., Moog C. H.: Disturbance decoupling problem for time-delay nonlinear systems: dynamic approach. IFAC Conference on Control and Systems’s Structure. Nantes 1998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.