zbMATH — the first resource for mathematics

Design of robust output affine quadratic controller. (English) Zbl 1249.93151
Summary: The paper addresses the problem robust output feedback controller design with guaranteed cost and affine quadratic stability for linear continuous time affine systems. The proposed design method leads to a non-iterative LMI based algorithm. A numerical example is given to illustrate the design procedure.
93D15 Stabilization of systems by feedback
93C05 Linear systems in control theory
LMI toolbox
Full Text: Link EuDML
[1] Benton R. E., Jr., Smith D.: A non iterative LMI based algorithm for robust static output feedback stabilization. Internat. J. Control 72 (1999), 1322-1330 · Zbl 0960.93048 · doi:10.1080/002071799220290
[2] Boyd S., Ghaoui L. El., Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM 115 (1994), Philadelphia · Zbl 0816.93004
[3] Crusius C. A. R., Trofino A.: Sufficient LMI conditions for output feedback control problems. IEEE Trans. Automat. Control 44 (1999), 5, 1053-1057 · Zbl 0956.93028 · doi:10.1109/9.763227
[4] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed structure controllers via numerical optimization. Proc. 33rd Conference on Decision and Control, Lake Buena Vista, FL 1994, pp. 2678-2683
[5] Gahinet P., Apkarian, P., Chilali M.: Affine parameter dependent Lyapunov functions and real parametric uncertainty. IEEE Trans. Automat. Control 41 (1996), 436-442 · Zbl 0854.93113 · doi:10.1109/9.486646
[6] Gahinet P., Nemirovski A., Laub A. J., Chilali M.: LMI Control Toolbox User’s Guide. The Mathworks Inc., Natick MA 1995
[7] Geromel J. C., Souza C. E. De, Skelton R. E.: Static output feedback controllers: stability and convexity. IEEE Trans. Automat. Control 43 (1998), 120-125 · Zbl 0952.93106 · doi:10.1109/9.654912
[8] Goh K. C., Safonov M. G., Papavassilopoulos G. P.: Global optimization for the biaffine matrix inequality problem. J. Global Optim. 7 (1995), 365-380 · Zbl 0844.90083 · doi:10.1007/BF01099648
[9] Gyurkovics E., Takacs T.: Stabilisation of discrete-time interconnected systems under control constraints. Proc. IEE Control Theory and Applications 147 (2000), 137-144
[10] Hejdiš J., Kozák, Š., Juráčková L.: Self-tuning controllers based on orthonormal functions. Kybernetika 36 (2000), 477-491 · Zbl 1249.93121
[11] Henrion D., Alzelier, D., Peaucelle D.: Positive polynomial matrices and improved robustness conditions. Proc. 15th Triennial World Congres, Barcelona 2002, CD
[12] Kose I. E., Jabbari F.: Robust control of linear systems with real parametric uncertainty. Automatica 35 (1999), 679-687 · Zbl 0982.93033 · doi:10.1016/S0005-1098(98)00184-8
[13] A.Kozáková: Robust Decentralized control of complex systems in frequency domain. Preprints of 2nd IFAC Workshop on NTDCS, Elsevier Kidlington UK, 1999
[14] Kučera V., Souza C. E. De: A necessary and sufficient conditions for output feedback stabilizability. Automatica 31 (1995), 1357-1359 · Zbl 0831.93056 · doi:10.1016/0005-1098(95)00048-2
[15] Yu, Li, Chu, Jian: An LMI approach to guaranteed cost of linear uncertain time delay systems. Automatica 35 (1999), 1155-1159 · Zbl 1041.93530 · doi:10.1016/S0005-1098(99)00007-2
[16] Mehdi D., Hamid, M. Al, Perrin F.: Robustness and optimality of linear quadratic controller for uncertain systems. Automatica 32 (1996), 1081-1083 · Zbl 0855.49024 · doi:10.1016/0005-1098(96)00037-4
[17] Oliveira M. C. De, Bernussou, J., Geromel J. C.: A new discrete-time robust stability condition. Systems Control Lett. 37 (1999), 261-265 · Zbl 0948.93058 · doi:10.1016/S0167-6911(99)00035-3
[18] Pakshin P. V.: Robust decentralized control of systems of random structure. J. Computer and Systems Sciences 42 (2003), 200-204 · Zbl 1110.93300
[19] Park P., Moon Y. S., Kwon W. H.: A stabilizing output feedback linear quadratic control for pure input delayed systems. Internat. J. Control 72 (1999), 385-391 · Zbl 0956.93053 · doi:10.1080/002071799221019
[20] Takahashi R. H. C., Ramos D. C. W., Peres P. L. D.: Robust control synthesis via a genetic algorithm and LMIS. Preprints 15th Triennial World Congress, Barcelona 2002, CD
[21] Tuan H. D., Apkarian P., Hosoe, S., Tuy H.: D. C. optimization approach to robust control: feasibility problems. Internat. J. Control 73 (2000), 89-104 · Zbl 0998.93012 · doi:10.1080/002071700219803
[22] Veselý V.: Static output feedback controller design. Kybernetika 37 (2001), 205-221 · Zbl 1265.93204 · www.kybernetika.cz · eudml:33528
[23] Veselý V.: Robust output feedback controller design for linear parametric uncertain systems. J. Electrical Engineering 53 (2002), 117-125
[24] Xu S. J., Darouch M.: On the robustness of linear systems with nonlinear uncertain parameters. Automatica 34 (1998), 1005-1008 · Zbl 0951.93024 · doi:10.1016/S0005-1098(98)00040-5
[25] Cao, Yong Yan, Sun, You Xian: Static output feedback simultaneous stabilization: LMI approach. Internat. J. Control 70 (1998), 803-814 · Zbl 0930.93066 · doi:10.1080/002071798222145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.