zbMATH — the first resource for mathematics

A collector for information without probability in a fuzzy setting. (English) Zbl 1249.93171
Summary: In the fuzzy setting, we define a collector of fuzzy information without probability, which allows us to consider the reliability of the observers. This problem is transformed in a system of functional equations. We give the general solution of that system for collectors which are compatible with composition law of the kind “inf”.

93E12 Identification in stochastic control theory
62A86 Fuzzy analysis in statistics
62F15 Bayesian inference
Full Text: Link EuDML
[1] Aczél J., Forte, B., Ng C. T.: L’equation fonctionelle et la théorie de l’Information sans probabilité. C. R. Acad. Sci. Paris 275 (1972), 727-729 · Zbl 0238.39007
[2] Aczél J., Forte, B., Ng C. T.: On a triangular functional equation and some application, in particular to the generalized theory of information. Aequationes Math. XI (1974), 11-30 · Zbl 0292.39003
[3] Baker J. A., Forte, B., Lam L. F.: On the existence of a collector for a class of information measures. Utilitas Math. 1 (1972), 219-239 · Zbl 0256.94025
[4] Benvenuti P., Divari, M., Pandolfi M.: Su un sistema di equazioni funzionali proveniente dalla teoria soggettiva della informazione. Rend. Mat. 3 (1972), 5, 529-540 · Zbl 0249.94006
[5] Benvenuti P., Vivona, D., Divari M.: A general information for fuzzy sets. Uncertainty in Knowledge Bases (B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, Lectures Notes in Computer Sciences 521), Springer-Verlag, Heidelberg 1999, pp. 307-316 · Zbl 0785.94002
[6] Bertoluzza C.: Compositive information measures of a fuzzy set. Fuzzy logic and soft computing 4 (B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, World Scientific 1995, pp. 353-359 · Zbl 0948.94506
[7] Forte B.: Information and probability: Collectors and Shannon compositivity. J. Deutsch. Math.-Verein 75 (1973), 42-49 · Zbl 0258.94015
[8] Forte B.: Information and probability: Collectors and compositivity. Symps. Math. IX (1972), 121-129 · Zbl 0241.94019
[9] Forte B.: Measures of information: the general axiomatic theory. RAIRO Inform. Théor. Appl. xxx (1969), 63-90 · Zbl 0192.56001
[10] Fériet J. Kampé de, Forte B.: Information et probabilité. C. R. Acad. Sci. Paris 265 (1967), 110-114, 142-146, 350-353 · Zbl 0201.53002
[11] Fériet J. Kampé de: Mesures de l’information par un ensemble d’observateurs. C. R. Acad. Sci. Paris 269 (1969), 1081-1085, 271 (1970), 1017-1021 · Zbl 0195.49003
[12] Fériet J. Kampé de: La Theorie Generale de L’Information et La Misure Subjective de L’Information. Lectures Notes in Mathematics 398, Springer-Verlag, Heidelberg 1974, pp. 1-35
[13] Fériet J. Kampé de, Forte, B., Benvenuti P.: Forme générale de l’opération de composition continue d’une information. C. R. Acad. Sci. Paris 269 (1969), 529-534 · Zbl 0212.23202
[14] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 · Zbl 1087.20041
[15] Maschio G.: Note di teoria dell’informazione. Quaderno dei gruppi di ricerca del C.N.R. 97 (1972) · Zbl 0493.39004
[16] Vivona D., Divari M.: On a collector of \(\wedge \)-compositive informations. Proc. IPMU’04, 2004, pp. 1199-1203
[17] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338-353 · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.