×

Finitely approximable groups and actions. II: Generic representations. (English) Zbl 1250.03086

Summary: Given a finitely generated group \(\Gamma\), we study the space Isom\((\Gamma,\mathbb {QU})\) of all actions of \(\Gamma\) by isometries of the rational Urysohn metric space \(\mathbb {QU}\), where Isom\((\Gamma,\mathbb {QU})\) is equipped with the topology it inherits seen as a closed subset of Isom\((\mathbb {QU})^{\Gamma }\). When \(\Gamma\) is the free group \(\mathbb F_{n}\) on \(n\) generators, this space is just Isom\((\mathbb {QU})^{n}\), but is in general significantly more complicated. We prove that when \(\Gamma\) is finitely generated abelian, there is a generic point in Isom\((\Gamma ,\mathbb {QU})\), i.e., there is a comeagre set of mutually conjugate isometric actions of \(\Gamma\) on \(\mathbb {QU}\).
For Part I see [C. Rosendal, J. Symb. Log. 76, No. 4, 1297–1306 (2011; Zbl 1250.03085)].

MSC:

03E15 Descriptive set theory
54H05 Descriptive set theory (topological aspects of Borel, analytic, projective, etc. sets)
54H20 Topological dynamics (MSC2010)

Citations:

Zbl 1250.03085
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Proceedings of the London Mathematical Society 65 pp 121– (1992)
[2] Bulletin Sciences de Mathématiques 51 pp 74– (1927)
[3] Finitely approximable groups and actions. Part I: The Ribes–Zalesskiĭ property 76 pp 1297– (2011)
[4] Journal of the London Mathematical Society 48 pp 204– (1993)
[5] DOI: 10.1090/S0002-9947-99-02374-0 · Zbl 0947.20018
[6] DOI: 10.2307/1969513
[7] DOI: 10.1090/S0002-9947-1949-0032642-4
[8] DOI: 10.4064/cm110-1-2 · Zbl 1134.22001
[9] DOI: 10.1142/S0218196701000449 · Zbl 1024.20022
[10] Introduction to group theory (2008)
[11] The descriptive set theory of Polish group actions 232 (1996) · Zbl 0949.54052
[12] Memoirs of the American Mathematical Society 164 (2003)
[13] DOI: 10.4064/fm205-1-1 · Zbl 1189.03051
[14] DOI: 10.1112/blms/25.1.37 · Zbl 0811.20026
[15] Rossiĭskaya Akademiya Nauk. Matematicheskiĭ Sbornik (N.S.) 70 pp 241– (1966)
[16] DOI: 10.1016/j.disc.2004.04.025 · Zbl 1058.03035
[17] DOI: 10.1016/j.topol.2008.03.003
[18] DOI: 10.1007/BF01370694 · Zbl 0766.03022
[19] Proceedings of the London Mathematical Society 94 pp 302– (2007) · Zbl 1118.03042
[20] Global aspects ofergodic group actions (2010)
[21] Classical descriptive set theory (1995)
[22] Generic expansions of {\(\omega\)}-categorical structures and semantics of generalized quantifiers 64 pp 775– (1999) · Zbl 0930.03034
[23] Commentationes Mathematicae Universitatis Carolinae 31 pp 181– (1990)
[24] DOI: 10.1007/BF02762385 · Zbl 1124.54012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.