zbMATH — the first resource for mathematics

Action of the Cremona group on a noncommutative ring. (English) Zbl 1250.14008
The author constructs a noncommutative algebra \(A\) on which the Cremona group acts by outer automorphisms. Let us recall that the Cremona group is the group of birational transformations of the projective plane, or equivalently the group of \(\mathbb{C}\)-linear automorphisms of the field \(\mathbb{C}(x,y)\). Two different constructions of the algebra \(A\) are provided: the first one proceeds by brute force using a noncommutative analog of the classical presentation of the Cremona group due to V. A. Iskovskikh [Russ. Math. Surv. 40, No. 5, 231–232 (1985; Zbl 0613.14012)]. The second one is more conceptual and uses derived categories of coherent sheaves.

14E07 Birational automorphisms, Cremona group and generalizations
14A22 Noncommutative algebraic geometry
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
Full Text: DOI arXiv
[1] Abramovich, D.; Karu, K.; Matsuki, K.; Wlodarczyk, J., Torification and factorization of birational maps, J. amer. math. soc., 15, 3, 531-572, (2002) · Zbl 1032.14003
[2] Blanc, J., On the inertia group of elliptic curves in the Cremona group of the plane, Michigan math. J., 56, 2, 315-330, (2008) · Zbl 1156.14011
[3] Bondal, A.; Kapranov, M., Representable functors, Serre functors, and reconstructions, Math. USSR-izvestiya, 35, 3, 519-541, (1990) · Zbl 0703.14011
[4] Bondal, A.; Kapranov, M., Enhanced triangulated categories, Math. USSR-sbornik, 70, 1, 93-107, (1991) · Zbl 0729.18008
[5] Drinfeld, V., DG quotients of DG categories, J. algebra, 272, 2, 643-691, (2004) · Zbl 1064.18009
[6] Etingof, P.; Ginzburg, V., Noncommutative del Pezzo surfaces and Calabi-Yau algebras · Zbl 1204.14004
[7] Iskovskih, V., Proof of a theorem on relations in the two-dimensional Cremona group, Uspekhi mat. nauk, 40, 5, 255-256, (1985)
[8] Iskovskih, V., A simple proof of a theorem of gizatullin, Tr. mat. inst. steklova, 183, 111-116, (1990)
[9] M. Kapranov, Noncommutative geometry and path integrals, 2006. · Zbl 1204.58008
[10] Keller, B., Deriving DG categories, Ann. sci. école norm. sup. (4), 27, 1, 63-102, (1994) · Zbl 0799.18007
[11] Kontsevich, M., Deformation quantization of Poisson manifolds, Lett. math. phys., 66, 3, 157-216, (2003) · Zbl 1058.53065
[12] Manin, Y.; Gelfand, S., Methods of homological algebra, (1996), Springer · Zbl 0855.18001
[13] Neeman, A., The connection between the K-theory localization theorem of thomason, trobaugh and yao and the smashing subcategories of bousfield and ravenel, Ann. sci. école norm. sup., 25, 5, 547-566, (1992) · Zbl 0868.19001
[14] Orlov, D., Projective bundles, monoidal transformations and derived categories of coherent sheaves, Izv. akad. nauk SSSR ser. mat., 56, 852-862, (1992) · Zbl 0798.14007
[15] Verdier, J.L., Des catégories dérivées des catégories abéliennes, Astérisque, 239, (1996) · Zbl 0882.18010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.