×

On skew polynomials over p.q.-Baer and p.p.-modules. (English) Zbl 1250.16023

Summary: Let \(M_R\) be a module and \(\sigma\) an endomorphism of \(R\). Let \(m\in M\) and \(a\in R\), we say that \(M_R\) satisfies the condition \(\mathcal C_1\) (respectively, \(\mathcal C_2\)), if \(ma=0\) implies \(m\sigma(a)=0\) (respectively, \(m\sigma(a)=0\) implies \(ma=0\)).
We show that if \(M_R\) is p.q.-Baer then so is \(M[x;\sigma]_{R[x;\sigma]}\) whenever \(M_R\) satisfies the condition \(\mathcal C_2\), and the converse holds when \(M_R\) satisfies the condition \(\mathcal C_1\). Also, if \(M_R\) satisfies \(\mathcal C_2\) and \(\sigma\)-skew Armendariz, then \(M_R\) is a p.p.-module if and only if \(M[x;\sigma]_{R[x;\sigma]}\) is a p.p.-module if and only if \(M[x,x^{-1};\sigma]_{R[x,x^{-1};\sigma]}\) (\(\sigma\in\operatorname{Aut}(R)\)) is a p.p.-module. Many generalizations are obtained and more results are found when \(M_R\) is a semicommutative module.

MSC:

16S36 Ordinary and skew polynomial rings and semigroup rings
16W20 Automorphisms and endomorphisms
16P60 Chain conditions on annihilators and summands: Goldie-type conditions
16D40 Free, projective, and flat modules and ideals in associative algebras
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
16U80 Generalizations of commutativity (associative rings and algebras)
PDFBibTeX XMLCite
Full Text: arXiv Link