×

Compact group automorphisms, addition formulas and Fuglede-Kadison determinants. (English) Zbl 1250.22006

Dynamical systems of algebraic origin give the simplest and most homogeneous examples, and as a result it is useful to be able to compute dynamical invariants in this setting explicitly. The topological entropy of automorphisms of compact groups was computed by S. A. Yuzvinskii [Sib. Math. J. 8, 172–178 (1967); translation from Sib. Mat. Zh. 8, 230–239 (1967; Zbl 0211.34901)], and this was later extended to an expression for the entropy of a \(\mathbb Z^d\)-action by automorphisms of a compact group in terms of the Mahler measure of associated polynomials in work of D. Lind, K. Schmidt and the reviewer [Invent. Math. 101, No. 3, 593–629 (1990; Zbl 0774.22002)]. Dealing with a non-abelian compact group presents no serious obstacles, but extending this result from actions of \(\mathbb Z^d\) to actions of other amenable groups presents formidable difficulties. A key breakthrough was made by C. Deninger [J. Am. Math. Soc. 19, No. 3, 737–758 (2006; Zbl 1104.22010)], who showed that the Fuglede-Kadison determinant [B. Fuglede and R. V. Kadison, Ann. Math. (2) 55, 520–530 (1952; Zbl 0046.33604)] could be used to express the entropy of certain algebraic actions of amenable groups. This was generalized by C. Deninger and K. Schmidt [Ergodic Theory Dyn. Syst. 27, No. 3, 769–786 (2007; Zbl 1128.22003)], but in all cases the results required conditions (coming from properties of the defining polynomial in the associated von Neumann algebra) on the action which were restrictive and opaque. Here a new approach is found, building on work of L. Bowen [Ergodic Theory Dyn. Syst. 31, No. 3, 703–718 (2011; Zbl 1234.37010)], and giving a complete result in the most natural case. To state this, let \(G\) be a countable amenable group and fix \(f\) in the integral group ring \(\mathbb Z G\) of \(G\). Then the entropy of the natural shift \(G\)-action on the character group of the quotient of \(\mathbb Z G\) by the left ideal generated by \(f\) is equal to the logarithm of the Fuglede-Kadison determinant of \(f\). This is a significant step towards an understanding of the dynamics of these basic building blocks of algebraic actions of amenable group actions.

MSC:

22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
37B40 Topological entropy
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
28D05 Measure-preserving transformations

References:

[1] W. Arveson, An Invitation to \(C^*\)-Algebras, New York: Springer-Verlag, 1976, vol. 39. · Zbl 0344.46123
[2] K. R. Berg, ”Convolution of invariant measures, maximal entropy,” Math. Systems Theory, vol. 3, pp. 146-150, 1969. · Zbl 0179.08301 · doi:10.1007/BF01746521
[3] V. Bergelson and A. Gorodnik, ”Ergodicity and mixing of non-commuting epimorphisms,” Proc. Lond. Math. Soc., vol. 95, iss. 2, pp. 329-359, 2007. · Zbl 1127.37007 · doi:10.1112/plms/pdm007
[4] L. Bowen, ”Measure conjugacy invariants for actions of countable sofic groups,” J. Amer. Math. Soc., vol. 23, iss. 1, pp. 217-245, 2010. · Zbl 1201.37005 · doi:10.1090/S0894-0347-09-00637-7
[5] L. Bowen, ”Entropy for expansive algebraic actions of residually finite groups,” Ergodic Theory Dynam. Systems, vol. 31, iss. 3, pp. 703-718, 2011. · Zbl 1234.37010 · doi:10.1017/S0143385710000179
[6] L. Bowen, ”Sofic entropy and amenable groups,” Ergodic Theory Dynam. Systems, vol. 32, pp. 427-466, 2011. · Zbl 1257.37007 · doi:10.1017/S0143385711000253
[7] L. Bowen and H. Li, Harmonic models and spanning forests of residually finite groups, 2011. · Zbl 1271.37023 · doi:10.1016/j.jfa.2012.06.015
[8] R. Bowen, ”Entropy for group endomorphisms and homogeneous spaces,” Trans. Amer. Math. Soc., vol. 153, pp. 401-414, 1971. · Zbl 0212.29201 · doi:10.2307/1995565
[9] C. Chou, ”Elementary amenable groups,” Illinois J. Math., vol. 24, iss. 3, pp. 396-407, 1980. · Zbl 0439.20017
[10] J. B. Conway, A Course in Functional Analysis, Second ed., New York: Springer-Verlag, 1990, vol. 96. · Zbl 0706.46003
[11] J. H. Conway and N. A. Sloane, Sphere Packings, Lattices and Groups, Third ed., New York: Springer-Verlag, 1999, vol. 290. · Zbl 0915.52003
[12] A. I. Danilenko, ”Entropy theory from the orbital point of view,” Monatsh. Math., vol. 134, iss. 2, pp. 121-141, 2001. · Zbl 0996.37007 · doi:10.1007/s006050170003
[13] C. Deninger, ”Fuglede-Kadison determinants and entropy for actions of discrete amenable groups,” J. Amer. Math. Soc., vol. 19, iss. 3, pp. 737-758, 2006. · Zbl 1104.22010 · doi:10.1090/S0894-0347-06-00519-4
[14] C. Deninger, ”Mahler measures and Fuglede-Kadison determinants,” Münster J. Math., vol. 2, pp. 45-63, 2009. · Zbl 1245.11107
[15] C. Deninger, ”\(p\)-adic entropy and a \(p\)-adic Fuglede-Kadison determinant,” in Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Vol. I, Boston, MA: Birkhäuser, 2009, vol. 269, pp. 423-442. · Zbl 1208.37004 · doi:10.1007/978-0-8176-4745-2_10
[16] C. Deninger, ”Determinants on von Neumann algebras, Mahler measures and Ljapunov exponents,” J. Reine Angew. Math., vol. 651, pp. 165-185, 2011. · Zbl 1220.46038 · doi:10.1515/CRELLE.2011.012
[17] C. Deninger and K. Schmidt, ”Expansive algebraic actions of discrete residually finite amenable groups and their entropy,” Ergodic Theory Dynam. Systems, vol. 27, iss. 3, pp. 769-786, 2007. · Zbl 1128.22003 · doi:10.1017/S0143385706000939
[18] J. Dodziuk, P. Linnell, V. Mathai, T. Schick, and S. Yates, ”Approximating \(L^2\)-invariants and the Atiyah conjecture,” Comm. Pure Appl. Math., vol. 56, iss. 7, pp. 839-873, 2003. · Zbl 1036.58017 · doi:10.1002/cpa.10076
[19] T. Downarowicz and J. Serafin, ”Fiber entropy and conditional variational principles in compact non-metrizable spaces,” Fund. Math., vol. 172, iss. 3, pp. 217-247, 2002. · Zbl 1115.37308 · doi:10.4064/fm172-3-2
[20] M. Einsiedler and H. Rindler, ”Algebraic actions of the discrete Heisenberg group and other non-abelian groups,” Aequationes Math., vol. 62, iss. 1-2, pp. 117-135, 2001. · Zbl 0987.37003 · doi:10.1007/PL00000133
[21] M. Einsiedler and T. Ward, ”Entropy geometry and disjointness for zero-dimensional algebraic actions,” J. Reine Angew. Math., vol. 584, pp. 195-214, 2005. · Zbl 1198.37010 · doi:10.1515/crll.2005.2005.584.195
[22] G. Fendler, K. Gröchenig, M. Leinert, J. Ludwig, and C. Molitor-Braun, ”Weighted group algebras on groups of polynomial growth,” Math. Z., vol. 245, iss. 4, pp. 791-821, 2003. · Zbl 1050.43003 · doi:10.1007/s00209-003-0571-6
[23] A. H. Frey, Studies in amenable semigroups, 1960.
[24] B. Fuglede and R. V. Kadison, ”Determinant theory in finite factors,” Ann. of Math., vol. 55, pp. 520-530, 1952. · Zbl 0046.33604 · doi:10.2307/1969645
[25] E. Glasner, Ergodic Theory via Joinings, Providence, RI: Amer. Math. Soc., 2003, vol. 101. · Zbl 1038.37002
[26] M. Hochster, ”Subsemigroups of amenable groups,” Proc. Amer. Math. Soc., vol. 21, pp. 363-364, 1969. · Zbl 0174.30801 · doi:10.2307/2037004
[27] A. Hulanicki, ”On the spectrum of convolution operators on groups with polynomial growth,” Invent. Math., vol. 17, pp. 135-142, 1972. · Zbl 0264.43007 · doi:10.1007/BF01418936
[28] J. W. Jenkins, ”An amenable group with a nonsymmetric group algebra,” Bull. Amer. Math. Soc., vol. 75, pp. 357-360, 1969. · Zbl 0186.46201 · doi:10.1090/S0002-9904-1969-12170-1
[29] J. W. Jenkins, ”Symmetry and nonsymmetry in the group algebras of discrete groups,” Pacific J. Math., vol. 32, pp. 131-145, 1970. · Zbl 0172.03603 · doi:10.2140/pjm.1970.32.131
[30] J. W. Jenkins, ”On the spectral radius of elements in a group algebra,” Illinois J. Math., vol. 15, pp. 551-554, 1971. · Zbl 0222.43002
[31] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary Theory, New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1983, vol. 100. · Zbl 0888.46039
[32] A. S. Kechris, Classical Descriptive Set Theory, New York: Springer-Verlag, 1995, vol. 156. · Zbl 0819.04002
[33] J. L. Kelley, General Topology, New York: Springer-Verlag, 1975, vol. 27. · Zbl 0306.54002
[34] D. Kerr and H. Li, ”Entropy and the variational principle for actions of sofic groups,” Invent. Math., vol. 186, pp. 501-558, 2011. · Zbl 1417.37041 · doi:10.1007/s00222-011-0324-9
[35] D. Kerr and H. Li, Soficity, amenability and dynamical entropy. · Zbl 1282.37011
[36] B. Kitchens and K. Schmidt, ”Isomorphism rigidity of irreducible algebraic \({\mathbf Z}^d\)-actions,” Invent. Math., vol. 142, iss. 3, pp. 559-577, 2000. · Zbl 0970.22006 · doi:10.1007/s002220000098
[37] S. Lang, Algebra, third ed., New York: Springer-Verlag, 2002, vol. 211. · Zbl 0984.00001
[38] H. Leptin and D. Poguntke, ”Symmetry and nonsymmetry for locally compact groups,” J. Funct. Anal., vol. 33, iss. 2, pp. 119-134, 1979. · Zbl 0414.43004 · doi:10.1016/0022-1236(79)90107-1
[39] D. A. Lind, ”The structure of skew products with ergodic group automorphisms,” Israel J. Math., vol. 28, iss. 3, pp. 205-248, 1977. · Zbl 0365.28015 · doi:10.1007/BF02759810
[40] D. A. Lind and K. Schmidt, ”Homoclinic points of algebraic \({\mathbf Z}^d\)-actions,” J. Amer. Math. Soc., vol. 12, iss. 4, pp. 953-980, 1999. · Zbl 0940.22004 · doi:10.1090/S0894-0347-99-00306-9
[41] D. A. Lind and K. Schmidt, ”Symbolic and algebraic dynamical systems,” in Handbook of Dynamical Aystems, Vol. 1A, Amsterdam: North-Holland, 2002, pp. 765-812. · Zbl 1044.37010 · doi:10.1016/S1874-575X(02)80012-1
[42] D. A. Lind, K. Schmidt, and T. Ward, ”Mahler measure and entropy for commuting automorphisms of compact groups,” Invent. Math., vol. 101, iss. 3, pp. 593-629, 1990. · Zbl 0774.22002 · doi:10.1007/BF01231517
[43] D. A. Lind and T. Ward, ”Automorphisms of solenoids and \(p\)-adic entropy,” Ergodic Theory Dynam. Systems, vol. 8, iss. 3, pp. 411-419, 1988. · Zbl 0634.22005 · doi:10.1017/S0143385700004545
[44] E. Lindenstrauss and B. Weiss, ”Mean topological dimension,” Israel J. Math., vol. 115, pp. 1-24, 2000. · Zbl 0978.54026 · doi:10.1007/BF02810577
[45] P. A. Linnell, ”Division rings and group von Neumann algebras,” Forum Math., vol. 5, iss. 6, pp. 561-576, 1993. · Zbl 0794.22008 · doi:10.1515/form.1993.5.561
[46] K. Löwner, ”Über monotone Matrixfunktionen,” Math. Z., vol. 38, iss. 1, pp. 177-216, 1934. · Zbl 0008.11301 · doi:10.1007/BF01170633
[47] W. Lück, ”Approximating \(L^2\)-invariants by their finite-dimensional analogues,” Geom. Funct. Anal., vol. 4, iss. 4, pp. 455-481, 1994. · Zbl 0853.57021 · doi:10.1007/BF01896404
[48] W. Lück, \(L^2\)-Invariants: Theory and Applications to Geometry and \(K\)-theory, New York: Springer-Verlag, 2002, vol. 44. · Zbl 1009.55001
[49] J. Ludwig, ”A class of symmetric and a class of Wiener group algebras,” J. Funct. Anal., vol. 31, iss. 2, pp. 187-194, 1979. · Zbl 0402.22003 · doi:10.1016/0022-1236(79)90060-0
[50] K. Mahler, ”An application of Jensen’s formula to polynomials,” Mathematika, vol. 7, pp. 98-100, 1960. · Zbl 0099.25003 · doi:10.1112/S0025579300001637
[51] K. Mahler, ”On some inequalities for polynomials in several variables,” J. London Math. Soc., vol. 37, pp. 341-344, 1962. · Zbl 0105.06301 · doi:10.1112/jlms/s1-37.1.341
[52] G. Miles and R. K. Thomas, ”Generalized torus automorphisms are Bernoullian,” in Studies in Probability and Ergodic Theory, New York: Academic Press, 1978, vol. 2, pp. 231-249. · Zbl 0499.22006
[53] R. Miles, ”The entropy of algebraic actions of countable torsion-free abelian groups,” Fund. Math., vol. 201, iss. 3, pp. 261-282, 2008. · Zbl 1154.37006 · doi:10.4064/fm201-3-4
[54] R. Miles and M. Björklund, ”Entropy range problems and actions of locally normal groups,” Discrete Contin. Dyn. Syst., vol. 25, iss. 3, pp. 981-989, 2009. · Zbl 1179.37012 · doi:10.3934/dcds.2009.25.981
[55] R. Miles and T. Ward, ”Orbit-counting for nilpotent group shifts,” Proc. Amer. Math. Soc., vol. 137, iss. 4, pp. 1499-1507, 2009. · Zbl 1160.22005 · doi:10.1090/S0002-9939-08-09649-4
[56] G. Mislin and A. Valette, Proper Group Actions and the Baum-Connes Conjecture, Basel: Birkhäuser, 2003. · Zbl 1028.46001
[57] J. Moulin Ollagnier, Ergodic Theory and Statistical Mechanics, New York: Springer-Verlag, 1985, vol. 1115. · Zbl 0558.28010 · doi:10.1007/BFb0101575
[58] M. A. Nauimark, Normed Algebras, Third ed., Wolters-Noordhoff Publishing, Groningen, 1972. · Zbl 0254.46025
[59] B. Nica, ”Relatively spectral morphisms and applications to \(K\)-theory,” J. Funct. Anal., vol. 255, iss. 12, pp. 3303-3328, 2008. · Zbl 1170.46042 · doi:10.1016/j.jfa.2008.04.018
[60] D. S. Ornstein and B. Weiss, ”Entropy and isomorphism theorems for actions of amenable groups,” J. Analyse Math., vol. 48, pp. 1-141, 1987. · Zbl 0637.28015 · doi:10.1007/BF02790325
[61] W. Parry, Topics in Ergodic Theory, Cambridge: Cambridge Univ. Press, 2004, vol. 75. · Zbl 1096.37001
[62] D. S. Passman, The Algebraic Structure of Group Rings, New York: Wiley-Interscience [John Wiley & Sons], 1977. · Zbl 0368.16003
[63] A. L. T. Paterson, Amenability, Providence, RI: Amer. Math. Soc., 1988, vol. 29. · Zbl 0648.43001
[64] G. K. Pedersen, \(C^{\ast} \)-Algebras and their Automorphism Groups, London: Academic Press [Harcourt Brace Jovanovich Publishers], 1979, vol. 14. · Zbl 0416.46043
[65] D. A. Raikov, ”To the theory of normed rings with involution,” C. R. \((\)Doklady\()\) Acad. Sci. URSS, vol. 54, pp. 387-390, 1946. · Zbl 0060.27102
[66] W. Rudin, Real and Complex Analysis, Third ed., New York: McGraw-Hill Book Co., 1987. · Zbl 0925.00005
[67] D. J. Rudolph and K. Schmidt, ”Almost block independence and Bernoullicity of \({\mathbf Z}^d\)-actions by automorphisms of compact abelian groups,” Invent. Math., vol. 120, iss. 3, pp. 455-488, 1995. · Zbl 0835.28007 · doi:10.1007/BF01241139
[68] D. J. Rudolph and B. Weiss, ”Entropy and mixing for amenable group actions,” Ann. of Math., vol. 151, iss. 3, pp. 1119-1150, 2000. · Zbl 0957.37003 · doi:10.2307/121130
[69] T. Schick, ”Erratum: “Integrality of \(L^2\)-Betti numbers”,” Math. Ann., vol. 322, iss. 2, pp. 421-422, 2002. · Zbl 0994.55006 · doi:10.1007/s002080100282
[70] T. Schick, ”\(L^2\)-determinant class and approximation of \(L^2\)-Betti numbers,” Trans. Amer. Math. Soc., vol. 353, iss. 8, pp. 3247-3265, 2001. · Zbl 0979.55004 · doi:10.1090/S0002-9947-01-02699-X
[71] K. Schmidt, Dynamical Systems of Algebraic Origin, Basel: Birkhäuser, 1995, vol. 128. · Zbl 0833.28001
[72] K. Schmidt, ”The dynamics of algebraic \(\mathbb Z^d\)-actions,” in European Congress of Mathematics, Vol. I, Basel: Birkhäuser, 2001, vol. 201, pp. 543-553. · Zbl 1071.28011
[73] K. Schmidt and T. Ward, ”Mixing automorphisms of compact groups and a theorem of Schlickewei,” Invent. Math., vol. 111, iss. 1, pp. 69-76, 1993. · Zbl 0824.28012 · doi:10.1007/BF01231280
[74] R. Solomyak, ”On coincidence of entropies for two classes of dynamical systems,” Ergodic Theory Dynam. Systems, vol. 18, iss. 3, pp. 731-738, 1998. · Zbl 0924.58047 · doi:10.1017/S0143385798108313
[75] M. Takesaki, Theory of Operator Algebras. I, New York: Springer-Verlag, 2002, vol. 124. · Zbl 0990.46034
[76] R. K. Thomas, ”The addition theorem for the entropy of transformations of \(G\)-spaces,” Trans. Amer. Math. Soc., vol. 160, pp. 119-130, 1971. · Zbl 0232.28015 · doi:10.2307/1995794
[77] P. Walters, An Introduction to Ergodic Theory, New York: Springer-Verlag, 1982, vol. 79. · Zbl 0475.28009
[78] T. B. Ward, ”The Bernoulli property for expansive \(\mathbb Z^2\) actions on compact groups,” Israel J. Math., vol. 79, iss. 2-3, pp. 225-249, 1992. · Zbl 0789.28014 · doi:10.1007/BF02808217
[79] T. Ward and Q. Zhang, ”The Abramov-Rokhlin entropy addition formula for amenable group actions,” Monatsh. Math., vol. 114, iss. 3-4, pp. 317-329, 1992. · Zbl 0764.28014 · doi:10.1007/BF01299386
[80] B. Weiss, ”Monotileable amenable groups,” in Topology, Ergodic Theory, Real Algebraic Geometry, Providence, RI: Amer. Math. Soc., 2001, vol. 202, pp. 257-262. · Zbl 0982.22004
[81] S. A. Yuzvinskiui, ”Metric properties of the endomorphisms of compact groups,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 29, pp. 1295-1328, 1965. · Zbl 0206.03602
[82] S. A. Yuzvinskiui, ”Computing the entropy of a group of endomorphisms,” Sibirsk. Mat. Ẑ., vol. 8, pp. 230-239, 1967. · Zbl 0211.34901 · doi:10.1007/BF01040581
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.