zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A constant enclosure method for validating existence and uniqueness of the solution of an initial value problem for a fractional differential equation. (English) Zbl 1250.34006
Summary: This paper presents a new method for validating existence and uniqueness of the solution of an initial value problems for fractional differential equations. An algorithm selecting a stepsize and computing a priori constant enclosure of the solution is proposed. Several illustrative examples, with linear and nonlinear fractional differential equations, are given to demonstrate the effectiveness of the method.

34A08Fractional differential equations
34A12Initial value problems for ODE, existence, uniqueness, etc. of solutions
65L05Initial value problems for ODE (numerical methods)
Full Text: DOI
[1] Dalir, M.; Bashour, M.: Applications of fractional calculus, Applied mathematical sciences 4, No. 21, 1021-1032 (2010) · Zbl 1195.26011 · http://www.m-hikari.com/ams/ams-2010/ams-21-24-2010/index.html
[2] Samko, S.; Kilbas, A.; Marichev, O.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[3] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II, Geophysical journal international 13, No. 5, 529-539 (1967)
[4] Delbosco, D.; Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation, Journal of mathematical analysis and applications 204, No. 2, 609-625 (1996) · Zbl 0881.34005 · doi:10.1006/jmaa.1996.0456
[5] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[6] Hayek, N.; Trujillo, J.; Rivero, M.; Bonilla, B.; Moreno, J.: An extension of Picard -- lindeloff theorem to fractional differential equations, Applicable analysis 70, No. 3-4, 347-361 (1999) · Zbl 1030.34003 · doi:10.1080/00036819808840696
[7] Diethelm, K.; Ford, N.: Analysis of fractional differential equations, Journal of mathematical analysis and applications 265, No. 2, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[8] Lakshmikantham, V.; Vatsala, A.: Basic theory of fractional differential equations, Nonlinear analysis 69, No. 8, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[9] Zhou, Y.: Existence and uniqueness of solutions for a system of fractional differential equations, Fractional calculus & applied analysis 12, No. 2, 195-204 (2009) · Zbl 05560547
[10] Deng, J.; Ma, L.: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations, Applied mathematics letters 23, No. 6, 676-680 (2010) · Zbl 1201.34008 · doi:10.1016/j.aml.2010.02.007
[11] Miller, K.; Ross, B.: Introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[12] Mainardi, F.; Luchko, Y.; Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation, Fractional calculus and applied analysis 4, No. 2, 153-192 (2001) · Zbl 1054.35156
[13] Jafari, H.; Daftardar-Gejji, V.: Solving a system of nonlinear fractional differential equations using Adomian decomposition, Journal of computational and applied mathematics 196, No. 2, 644-651 (2006) · Zbl 1099.65137 · doi:10.1016/j.cam.2005.10.017
[14] Odibat, Z.; Momani, S.: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos, solitons and fractals 36, No. 1, 167-174 (2008) · Zbl 1152.34311 · doi:10.1016/j.chaos.2006.06.041
[15] Cang, J.; Tan, Y.; Xu, H.; Liao, S.: Series solutions of nonlinear Riccati differential equations with fractional order, Chaos, solitons and fractals 40, No. 1, 1-9 (2009) · Zbl 1197.34006 · doi:10.1016/j.chaos.2007.04.018
[16] Arikoglu, A.; Ozkol, I.: Solution of fractional differential equations by using differential transform method, Chaos, solitons and fractals 34, No. 5, 1473-1481 (2007) · Zbl 1152.34306 · doi:10.1016/j.chaos.2006.09.004
[17] Momani, S.; Odibat, Z.: A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula, Journal of computational and applied mathematics 220, No. 1 -- 2, 85-95 (2008) · Zbl 1148.65099 · doi:10.1016/j.cam.2007.07.033
[18] Odibat, Z.; Momani, S.; Erturk, V.: Generalized differential transform method: application to differential equations of fractional order, Applied mathematics and computation 197, No. 2, 467-477 (2008) · Zbl 1141.65092 · doi:10.1016/j.amc.2007.07.068
[19] Odibat, Z.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order, International journal of nonlinear sciences and numerical simulation 7, No. 1, 27-34 (2006)
[20] Diethelm, K.; Ford, N.; Freed, A.: A predictor -- corrector approach for the numerical solution of fractional differential equations, Nonlinear dynamics 29, No. 1, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[21] Diethelm, K.; Ford, N.: Multi-order fractional differential equations and their numerical solution, Applied mathematics and computation 154, No. 3, 621-640 (2004) · Zbl 1060.65070 · doi:10.1016/S0096-3003(03)00739-2
[22] Momani, S.; Odibat, Z.: Numerical approach to differential equations of fractional order, Journal of computational and applied mathematics 207, No. 1, 96-110 (2007) · Zbl 1119.65127 · doi:10.1016/j.cam.2006.07.015
[23] Lin, Y.; Stadtherr, M.: Validated solutions of initial value problems for parametric odes, Applied numerical mathematics 57, No. 10, 1145-1162 (2007) · Zbl 1121.65084 · doi:10.1016/j.apnum.2006.10.006
[24] T. Raissi, Méthodes ensemblistes pour l’estimation d’état et de paramètres (in French), Ph.D. thesis, Université Paris XII Val de Marne, 2004.
[25] Nedialkov, N.; Jackson, K.; Corliss, G.: Validated solutions of initial value problems for ordinary differential equations, Applied mathematics and computation 105, No. 1, 21-68 (1999) · Zbl 0934.65073 · doi:10.1016/S0096-3003(98)10083-8
[26] Moore, R.: Interval analysis, (1966) · Zbl 0176.13301
[27] R. Moore, F. Bierbaum, Methods and applications of interval analysis, Society for Industrial Mathematics, 1979.
[28] Moore, R.; Ratschek, H.: Inclusion functions and global optimization II, Mathematical programming 41, No. 1, 341-356 (1988) · Zbl 0644.90074 · doi:10.1007/BF01580772
[29] Lohner, R.: Enclosing the solutions of ordinary initial and boundary value problems, Computer arithmetic: scientific computation and programming languages, 255-286 (1987)