×

Homology of the curve complex and the Steinberg module of the mapping class group. (English) Zbl 1250.57032

Let \(\Sigma\) denote either the closed genus \(g\) surface \(\Sigma_g\) or the closed genus \(g\) surface with one marked point \(\Sigma_g^1\). The mapping class group \(\mathrm{Mod}(\Sigma)\) is the group of isotopy classes of orientation-preserving self-diffeomorphisms of \(\Sigma\), resp. of diffeomorphisms which fix the marked point when \(\Sigma=\Sigma_g^1\). The curve complex \(\mathcal{C}(\Sigma)\) is the simplicial complex with \(n\)-simplices corresponding to the isotopy class of \(n+1\) disjoint essential simple closed curves in \(\Sigma\). J. L. Harer [Invent. Math. 84, 157–176, (1986; Zbl 0592.57009)] showed that \(\mathcal{C}(\Sigma)\) has the homotopy type of a wedge sum of spheres of dimension \(2g-2\). The Steinberg module for \(\mathrm{Mod}(\Sigma)\) is the \(\mathrm{Mod}(\Sigma)\)-module \(\mathrm{St}(\Sigma) = \tilde{H}_{2g-2} (\mathcal{C}(\Sigma) ; \mathbb{Z})\) . In the paper under review, it is shown that \(\mathrm{St}(\Sigma)\) is a cyclic \(\mathrm{Mod}(\Sigma)\)-module (Theorem 4.2).
An arc system \(\alpha = \{ \alpha_0, \ldots, \alpha_n \}\) \(k\)-fills \(\Sigma_g^1\) if \(\Sigma_g^1 \setminus \cup \alpha\) is \(k+1\) disks. Let \(\mathcal{F}_k\) be the module of oriented \(k\)-filling arc systems. In Proposition 3.3, it is shown that, as a \(\mathrm{Mod}(\Sigma_g^1)\)-module, \(\mathrm{St}(\Sigma_g^1) \cong \mathcal{F}_0 / \partial \mathcal{F}_1\). The homeomorphism types of filling arc systems are described by chord diagrams. In Theorem 4.2, the generator of \(\mathrm{St}(\Sigma)\) is explicitly described by a chord diagram.

MSC:

57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)

Citations:

Zbl 0592.57009
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] J. E. Andersen, A. J. Bene, and R. C. Penner, Groupoid extensions of mapping class representations for bordered surfaces , Topology Appl. 156 (2009), 2713-2725. · Zbl 1196.57013 · doi:10.1016/j.topol.2009.08.001
[2] A. Ash, Unstable cohomology of \(\operatorname{SL}(n,\mathcal{O})\) , J. Algebra 167 (1994), 330-342. · Zbl 0807.11030 · doi:10.1006/jabr.1994.1188
[3] A. Ash and L. Rudolph, The modular symbol and continued fractions in higher dimensions , Invent. Math. 55 (1979), 241-250. · Zbl 0426.10023 · doi:10.1007/BF01406842
[4] M. Bestvina and M. Feighn, The topology at infinity of \(\operatorname{Out}(F_{n})\) , Invent. Math. 140 (2000), 651-692. · Zbl 0954.55011 · doi:10.1007/s002220000068
[5] R. Bieri, Homological Dimension of Discrete Groups , Queen Mary College Math. Notes, Math. Dept., Queen Mary College, London, 1976. · Zbl 0357.20027
[6] R. Bieri and B. Eckmann, Groups with homological duality generalizing Poincaré duality , Invent. Math. 20 (1973), 103-124. · Zbl 0274.20066 · doi:10.1007/BF01404060
[7] J. S. Birman, Mapping class groups and their relationship to braid groups , Comm. Pure Appl. Math. 22 (1969), 213-238. · Zbl 0167.21503 · doi:10.1002/cpa.3160220206
[8] A. Borel and J.-P. Serre, Corners and arithmetic groups , with appendix “Arrondissement des variétés à coins” by A. Douady and L. Hérault, Comment. Math. Helv. 48 (1973), 436-491. · Zbl 0274.22011 · doi:10.1007/BF02566134
[9] K. S. Brown, Cohomology of Groups , Grad. Texts in Math. 87 , Springer, New York, 1982.
[10] K. S. Brown, Buildings , reprint of the 1989 original, Springer Monogr. Math., Springer, New York, 1998.
[11] B. Farb and D. Margalit, A Primer on Mapping Class Groups , Princeton Math. Ser. 49 , Princeton Univ. Press, Princeton, N.J., 2012. · Zbl 1245.57002
[12] P. E. Gunnells, Computing Hecke eigenvalues below the cohomological dimension , Experiment. Math. 9 (2000), 351-367. · Zbl 1037.11037 · doi:10.1080/10586458.2000.10504412
[13] J. L. Harer, Stability of the homology of the mapping class groups of orientable surfaces , Ann. of Math. (2) 121 (1985), 215-249. · Zbl 0579.57005 · doi:10.2307/1971172
[14] J. L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface , Invent. Math. 84 (1986), 157-176. · Zbl 0592.57009 · doi:10.1007/BF01388737
[15] J. L. Harer, “The cohomology of the moduli space of curves” in Theory of Moduli (Montecatini Terme, 1985) , Lecture Notes in Math. 1337 , Springer, Berlin, 1988, 138-221. · Zbl 0707.14020
[16] J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves , Invent. Math. 85 (1986), 457-485. · Zbl 0616.14017 · doi:10.1007/BF01390325
[17] W. J. Harvey, “Boundary structure of the modular group” in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) , Ann. of Math. Stud. 97 , Princeton Univ. Press, Princeton, N.J., 1981, 245-251. · Zbl 0461.30036
[18] A. Hatcher, On triangulations of surfaces , Topology Appl. 40 (1991), 189-194; updated version, Triangulations of surfaces , preprint, (accessed 23 April 2012). · Zbl 0727.57012 · doi:10.1016/0166-8641(91)90050-V
[19] A. Hatcher and K. Vogtmann, The complex of free factors of a free group , Quart. J. Math. Oxford Ser. (2) 49 (1998), 459-468. · Zbl 0935.20015 · doi:10.1093/qjmath/49.196.459
[20] N. V. Ivanov, Complexes of curves and the Teichmüller modular group (in Russian), Uspekhi Mat. Nauk 42 , no. 3 (1987), 49-91, 255; English translation in Russian Math. Surveys 42 (1987), 55-107. · Zbl 0637.32021
[21] N. V. Ivanov, Attaching corners to Teichmüller space (in Russian), Algebra i Analiz 1 , no. 5 (1989), 115-143; English translation in Leningrad Math. J. 1 (1990), 1177-1205. · Zbl 0766.32023
[22] N. V. Ivanov, “Mapping class groups” in Handbook of Geometric Topology , North-Holland, Amsterdam, 2002, 523-633. · Zbl 1002.57001
[23] N. Ivanov and L. Ji, Infinite topology of curve complexes and non-Poincaré duality of Teichmüller modular groups , Enseign. Math. (2) 54 (2008), 381-395. · Zbl 1162.57014
[24] R. P. Kent, IV, C. J. Leininger, and S. Schleimer, Trees and mapping class groups , J. Reine Angew. Math. 637 (2009), 1-21. · Zbl 1190.57014 · doi:10.1515/CRELLE.2009.087
[25] S. Lang, Algebra , 3rd ed., Grad. Texts in Math. 211 , Springer, New York, 2002.
[26] C. W. Lee, The associahedron and triangulations of the \(n\)-gon , European J. Combin. 10 (1989), 551-560. · Zbl 0682.52004 · doi:10.1016/S0195-6698(89)80072-1
[27] R. Lee and R. H. Szczarba, On the homology and cohomology of congruence subgroups , Invent. Math. 33 (1976), 15-53. · Zbl 0332.18015 · doi:10.1007/BF01425503
[28] L. Mosher, “A user’s guide to the mapping class group: Once punctured surfaces” in Geometric and Computational Perspectives on Infinite Groups (Minneapolis, Minn., and New Brunswick, N.J., 1994) , DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 25 , Amer. Math. Soc., Providence, 1996, 101-174. · Zbl 0851.57015
[29] R. C. Penner and G. McShane, Stable curves and screens on fatgraphs , preprint, [math.GT] 0707.1468v2
[30] L. Solomon, “The Steinberg character of a finite group with \(BN\)-pair” in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) , Benjamin, New York, 1969, 213-221. · Zbl 0216.08001
[31] K. Strebel, Quadratic Differentials , Ergeb. Math. Grenzgeb. (3) 5 , Springer, Berlin, 1984. · Zbl 0547.30001
[32] K. Vogtmann, “Automorphisms of free groups and outer space” in Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000) , Geom. Dedicata 94 (2002), 1-31. · Zbl 1017.20035 · doi:10.1023/A:1020973910646
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.