×

Topological and analytical properties of Sobolev bundles. II. Higher dimensional cases. (English) Zbl 1250.58004

Summary: We define various classes of Sobolev bundles and connections and study their topological and analytical properties. We show that certain kinds of topologies (which depend on the classes) are well-defined for such bundles and they are stable with respect to the natural Sobolev topologies. We also extend the classical Chern-Weil theory for such classes of bundles and connections. Applications related to variational problems for the Yang-Mills functional are also given.
For Part I see [Ann. Global Anal. Geom. 35, No. 3, 277–337 (2009; Zbl 1166.58003)].

MSC:

58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
58D15 Manifolds of mappings
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
57R22 Topology of vector bundles and fiber bundles
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals

Citations:

Zbl 1166.58003

References:

[1] Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167 (1991), 153-206. · Zbl 0756.46017 · doi:10.1007/BF02392449
[2] Bethuel, F. and Zheng, X.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80 (1988), 60-75. · Zbl 0657.46027 · doi:10.1016/0022-1236(88)90065-1
[3] Bourgain, J. and Brezis, H.: On the equation \(\textdivY=f\) and application to control of phases. J. Amer. Math. Soc. 16 (2003), 393-426. · Zbl 1075.35006 · doi:10.1090/S0894-0347-02-00411-3
[4] Bourgain, J. and Brezis, H.: New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. (JEMS) 9 (2007), 277-315. · Zbl 1176.35061 · doi:10.4171/JEMS/80
[5] Bredon, G.: Topology and geometry . Graduate Texts in Mathematics 139 . Springer-Verlag, New York, 1993. · Zbl 0791.55001
[6] Donaldson, S.K.: Connections, cohomology and the intersection forms of 4-manifolds. J. Differential Geom. 24 (1986), 275-341. · Zbl 0635.57007
[7] Donaldson, S.K. and Kronheimer, P.B.: The geometry of four-Manifolds . Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1990. · Zbl 0820.57002
[8] Federer, H.: Geometric measure theory . Die Grundlehren der mathematischen Wissenschaften 153 . Springer-Verlag New York, New York, 1969. · Zbl 0176.00801
[9] Giaquinta, M., Modica, G. and Souček, J.: Cartesian currents in the calculus of variations. I, II . Ergebnisse der Mathematik und ihrer Grenzgebiete 37 , 38 . Springer-Verlag, Berlin, 1998. · Zbl 0914.49001
[10] Hang, F. and Lin, F.H.: Topology of Sobolev mappings. II. Acta Math. 191 (2003), 55-107. · Zbl 1061.46032 · doi:10.1007/BF02392696
[11] Hamburger, C.: Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 431 (1992), 7-64. · Zbl 0776.35006 · doi:10.1515/crll.1992.431.7
[12] Husemoller, D.: Fibre Bundles , third edition. Graduate Texts in Mathematics 20 . Springer-Verlag, New York, 1994.
[13] Isobe, T.: Topological and analytical properties of Sobolev bundles. I: The critical case. Ann. Global Anal. Geom. 35 (2009), 277-337. · Zbl 1166.58003 · doi:10.1007/s10455-008-9137-5
[14] Isobe, T.: A regularity result for a class of degenerate Yang-Mills connections in critical dimensions. Forum Math. 20 (2008), 1109-1139. · Zbl 1160.58009 · doi:10.1515/FORUM.2008.051
[15] Kobayashi, S. and Nomizu, K.: Foundations of differential geometry . Vol. I, II. Interscience Publishers John Wiley & Sons, New York-London-Sydney 1963, 1969. · Zbl 0119.37502
[16] Lanzani, L. and Stein, E.M.: A note on div and curl inequalities. Math. Res. Lett. 12 (2005), 57-61. · Zbl 1113.26015 · doi:10.4310/MRL.2005.v12.n1.a6
[17] Lions, P.L.: The concentration compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201. · Zbl 0704.49005 · doi:10.4171/RMI/6
[18] Lions, P.L.: The concentration compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1 (1985), no. 2, 45-121. · Zbl 0704.49006 · doi:10.4171/RMI/12
[19] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability . Cambridge Studies in Advanced Mathematics 44 . Cambridge University Press, Cambridge, 1995. · Zbl 0819.28004
[20] Meyer, Y. and Rivière, T.: A partial regularity result for a class of stationary Yang-Mills fields in high dimension. Rev. Mat. Iberoamericana 19 (2003), no. 1, 195-219. · Zbl 1127.35317 · doi:10.4171/RMI/343
[21] Nakajima, H.: Compactness of the moduli space of Yang-Mills connections in higher dimensions. J. Math. Soc. Japan 40 (1988), 383-392. · Zbl 0647.53030 · doi:10.2969/jmsj/04030383
[22] Parker, T.H. and Wolfson, J.G.: Pseudo-holomorphic maps and bubble trees. J. Geom. Anal. 3 (1993), 63-98. · Zbl 0759.53023 · doi:10.1007/BF02921330
[23] Price, P.: A monotonicity formula for Yang-Mills fields. Manuscripta Math. 43 (1983), 131-166. · Zbl 0521.58024 · doi:10.1007/BF01165828
[24] Rivière, T.: Interpolation spaces and energy quantization for Yang-Mills fields. Comm. Anal. Geom. 10 (2002), 683-708. · Zbl 1018.58006
[25] Sacks, P. and Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. of Math. (2) 113 (1981), 1-24. · Zbl 0462.58014 · doi:10.2307/1971131
[26] Schoen, R. and Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom. 18 (1983), 253-268. · Zbl 0547.58020
[27] Sedlacek, S.: A direct method for minimizing the Yang-Mills functional over 4-manifolds. Comm. Math. Phys. 86 (1982), 515-527. · Zbl 0506.53016 · doi:10.1007/BF01214887
[28] Shevchishin, V.: Limit holonomy and extension properties of Sobolev and Yang-Mills bundles. J. Geom. Anal. 12 (2002), 493-528. · Zbl 1034.58011 · doi:10.1007/BF02922051
[29] Simon, L.: Lectures on geometric measure theory . Proceedings of the Centre for Mathematical Analysis, Australian National University 3 . Australian National Univ., Centre for Mathematical Analysis, Canberra, 1983. · Zbl 0546.49019
[30] Tao, T. and Tian, G.: A singularity removal theorem for Yang-Mills fields in higher dimensions. J. Amer. Math. Soc. 17 (2004), no. 3, 557-593. · Zbl 1086.53043 · doi:10.1090/S0894-0347-04-00457-6
[31] Taubes, C.H.: Self-dual Yang-Mills connections on non-self-dual 4-manifolds. J. Differential Geom. 17 (1982), 139-170. · Zbl 0484.53026
[32] Taubes, C.H.: Self-dual connections on 4-manifolds with indefinite intersection matrix. J. Differential Geom. 19 (1984), 517-560. · Zbl 0552.53011
[33] Taubes, C.H.: Path-connected Yang-Mills moduli spaces. J. Differential Geom. 19 (1984), 337-392. · Zbl 0551.53040
[34] Taylor, M.E.: Partial differential equations. I-III . Applied Mathematical Sciences 115-117 . Springer-Verlag, New York, 1996, 1996, 1997. · Zbl 1206.35002
[35] Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 17-86. · Zbl 0057.15502 · doi:10.1007/BF02566923
[36] Tian, G.: Gauge theory and calibrated geometry. Ann. of Math. (2) 151 (2000), 193-268. JSTOR: · Zbl 0957.58013 · doi:10.2307/121116
[37] Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977), 219-240. · Zbl 0372.35030 · doi:10.1007/BF02392316
[38] Uhlenbeck, K.: Connections with \(L^p\) bounds on curvature. Comm. Math. Phys. 83 (1982), 31-42. · Zbl 0499.58019 · doi:10.1007/BF01947069
[39] Uhlenbeck, K.: Removable singularities in Yang-Mills fields. Comm. Math. Phys. 83 (1982), 11-29. · Zbl 0491.58032 · doi:10.1007/BF01947068
[40] Uhlenbeck, K.: The Chern classes of Sobolev connections. Comm. Math. Phys. 101 (1985), 449-457. · Zbl 0586.53018 · doi:10.1007/BF01210739
[41] White, B.: Infima of energy functionals in homotopy classes of mappings. J. Differential Geom. 23 (1986), 127-142. · Zbl 0588.58017
[42] White, B.: Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math. 160 (1988), 1-17. · Zbl 0647.58016 · doi:10.1007/BF02392271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.